Loop and double loop geometry
环路和双环几何形状
基本信息
- 批准号:19K14495
- 负责人:
- 金额:$ 2.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2019
- 资助国家:日本
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the long term goals of this project is to better understand the Coulomb branches of quiver gauge theories, which give rise to a definition of Kac-Moody affine Grassmannian slices. Specifically the goal is to understand their geometry explicitly. In November 2022, my collaborator, Alex Weekes, and I posted a preprint titled "Fundamental monopole operators and embeddings of Kac-Moody affine Grassmannian slices". In this paper, we construct embeddings of Kac-Moody affine Grassmannian slices into one another using Fundamental Monopole Operators. In this way, we answer a question posed by Finkelberg in his 2018 address at the ICM (International Congress of Mathematicians). In particular, we are able to construct many Poisson subvarieties of Kac-Moody Affine Grassmannian slices in this way. Our hope is that the Fundamental Monopole Operators will be a crucial tool in further investigations of Kac-Moody Affine Grassmannian slices.Additionally, I have made further progress in the project with Auguste Hebert on understanding completions of Kac-Moody Affine Hecke algebras. I have also made progress in the project with Anna Puskas on the T-basis of Kac-Moody Affine Hecke algebras and its relationship with the length function and Bruhat order.
这个项目的长期目标之一是更好地理解箭图规范理论的库仑分支,它引起了Kac-Moody仿射Grassman切片的定义。具体地说,目标是明确了解它们的几何图形。2022年11月,我和我的合作者Alex Weekes发布了一本预印本,标题是《基本单极子算子和Kac-Moody仿射Grassmanian切片的嵌入》。本文利用基本单极算子构造了Kac-Moody仿射Grassman切片的相互嵌入。通过这种方式,我们回答了芬克尔伯格在2018年国际数学家大会(ICM)上发表演讲时提出的一个问题。特别地,我们可以用这种方法构造Kac-Moody仿射Grassman切片的许多Poisson亚簇。我们希望基本单极子算子将成为进一步研究Kac-Moody Affine Grassmanian切片的重要工具。此外,我与Auguste Hebert在理解Kac-Moody Affine Hecke代数的完备化方面取得了进一步的进展。我还与Anna Puskas在Kac-Moody Affine Hecke代数的T-基及其与长度函数和Bruhat序的关系方面取得了进展。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward double affine flag varieties and Grassmannians.
走向双仿射旗变种和格拉斯曼尼亚。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dinakar Muthiah;Anna Puskas;Ian Whitehead;Dinakar Muthiah;Dinakar Muthiah;Dinakar Muthiah;Dinakar Muthiah;Dinakar Muthiah;Dinakar Muthiah;Dinakar Muthiah
- 通讯作者:Dinakar Muthiah
The equations defining affine Grassmannians in type A and a conjecture of Kreiman, Lakshmibai, Magyar, and Weyman.
定义 A 型仿射格拉斯曼方程以及 Kreiman、Lakshmibai、Magyar 和 Weyman 的猜想。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Muthiah Dinakar;Weekes Alex;Yacobi Oded
- 通讯作者:Yacobi Oded
Correction factors for Kac-Moody groups and t-deformed root multiplicities
Kac-Moody 群和 t 变形根多重数的校正因子
- DOI:10.1007/s00209-019-02419-1
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Dinakar Muthiah;Anna Puskas;Ian Whitehead
- 通讯作者:Ian Whitehead
Equations for affine Grassmannians and their Schubert varieties
仿射格拉斯曼方程及其舒伯特簇
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dinakar Muthiah;Anna Puskas;Ian Whitehead;Dinakar Muthiah;Dinakar Muthiah
- 通讯作者:Dinakar Muthiah
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MUTHIAH DINAKAR其他文献
MUTHIAH DINAKAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}