Characterization of systematic errors in direct quantum state measurements

直接量子态测量中系统误差的表征

基本信息

  • 批准号:
    19K14620
  • 负责人:
  • 金额:
    $ 1.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

We investigated the systematic operational errors in the direct state measurements (DSM) with a quantum controlled interaction framework. In this scheme, a target system is controlled by a qubit probe and postselected onto a conjugate basis; the outcomes of the control qubit probe can be measured and taken out of the estimated state. We have considered two types of operational interaction: (i) invert quantum controlled interaction (type-I) and (ii) arbitrary strong interaction (type-II), which is equivalent to a von Neumann interaction.We found that type-I gives lower systematic error than type-II, which means more accuracy. For the same confidence level, type-I has a higher ratio into percentage in the confidence region. The systematic error in type-I is also well against the noise as its fidelity is protected under the noise.Our study gives a better solution for quantum state tomography using the quantum controlled measurement scheme (better than conventional strong measurements and weak measurements.) Furthermore, its measurement is simple and applicable to high-dimension systems. This method, thus, could be a potential candidate for further characterizing the properties of large systems.
我们在量子控制的相互作用框架下研究了直接态测量(DSM)中的系统操作误差。在该方案中,目标系统由量子位探针控制并后选到共轭基上;控制量子位探针的结果可以被测量并从估计状态中取出。我们考虑了两种类型的操作相互作用:(i)反向量子控制相互作用(类型- i)和(ii)任意强相互作用(类型- ii),这相当于冯·诺伊曼相互作用。我们发现i型比ii型给出更低的系统误差,这意味着更高的准确性。对于相同的置信水平,i型在置信区域内的占比更高。在噪声的作用下,系统误差的保真度得到了保护,对噪声的抵抗能力也很好。我们的研究为量子态层析成像提供了一个更好的解决方案,使用量子控制的测量方案(优于传统的强测量和弱测量)。此外,它的测量简单,适用于高维系统。因此,这种方法可能是进一步表征大型系统特性的潜在候选方法。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Systematic errors in direct state measurements with quantum controlled measurements
Continuous-monitoring measured signals bounded by past and future conditions in enlarged quantum systems
  • DOI:
    10.1007/s11128-019-2314-6
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Le Bin Ho
  • 通讯作者:
    Le Bin Ho
Hilbert Spaces: Properties and Applications
希尔伯特空间:属性和应用
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kim Dakyeong;Sato Takumi;Kobayashi Shingo;Asano Yasuhiro;Le Bin Ho;Le Bin Ho (editor)
  • 通讯作者:
    Le Bin Ho (editor)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LE BINHO其他文献

LE BINHO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LE BINHO', 18)}}的其他基金

Quantum Compilation algorithm for many-body Hamiltonian tomography
多体哈密顿断层扫描的量子编译算法
  • 批准号:
    23K13025
  • 财政年份:
    2023
  • 资助金额:
    $ 1.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了