Development and verification of a constitutive approach for the determination of high-strain-rate flow curves by means of the cutting process

通过切削过程确定高应变率流动曲线的本构方法的开发和验证

基本信息

项目摘要

The benefit of the FE-simulation for the analysis, design and optimization of metal cutting processes is undisputed, especially in the development of costly and time-intensive tool concepts. Furthermore, it is increasingly used not only in basic research works but also from medium-sized companies to improve the efficiency of product development. In order to simulate real machining processes with FE codes, a reliable constitutive material law is required. This must be capable to exactly describe the thermo-mechanical material flow behavior at extremely high strains (1-5), strain rates (10^-3 - 10^6 1/s) and temperatures (Thomologe = 0.16 to 0.90). For the determination of high-strain-rate flow curves, which are essential for the development of constitutive material laws, special material testing methods are generally used. This includes, for example, the use of the Split Hopkinson Bar Testing (SHBT). SHPT, specially developed for high-strain-rate deformations, is based on the elastic wave theory and can maximum strain rates up to 10^4 1/s. The achieved strain rates with the SHBT are by two orders of magnitude smaller than those in the cutting process. Therefore, the material law must be extrapolated to higher strain rates for the FE-cutting simulation, whereby the cutting material behaviour cannot be adequately reproduced. In addition, the SHBT technique is very complicated, cost-intensive and time consuming. The objective of this research work is, based on the Oxley shear zone theory, the FE cutting simulation and the inverse modeling the development, validation, and supply of a simple and economical constitutive approach to determine high-strain-rate flow curves (>10^4 1/s) directly from the cutting process. To verify the approach to be developed, different materials are to be considered.
有限元仿真在金属切削过程分析、设计和优化方面的优势是毋庸置疑的,尤其是在开发成本高、耗时长的刀具概念方面。此外,它不仅越来越多地用于基础研究工作,而且也越来越多地用于中型公司,以提高产品开发效率。为了用有限元程序模拟真实的加工过程,需要可靠的材料本构关系。这必须能够准确描述在极高应变(1-5)、应变速率(10^-3 - 10^6 1/s)和温度(ε = 0.16至0.90)下的热机械材料流动行为。为了确定高应变率流动曲线,这是必不可少的本构材料定律的发展,特殊的材料测试方法通常使用。例如,这包括使用分离式霍普金森杆测试(SHBT)。SHPT是专门为高应变率变形而开发的,基于弹性波理论,最大应变率可达10^4 1/s。与SHBT实现的应变速率是由两个数量级小于那些在切削过程中。因此,材料定律必须外推到更高的应变率FE切削模拟,从而不能充分再现切削材料的行为。此外,SHBT技术非常复杂,成本高且耗时。本研究工作的目的是,基于奥克斯利剪切带理论,有限元切削模拟和逆建模的发展,验证,并提供一个简单和经济的本构方法来确定高应变率流动曲线(>10^4 1/s)直接从切削过程。为了验证将要开发的方法,需要考虑不同的材料。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
INVERSE MATERIAL MODEL PARAMETER IDENTIFICATION FOR METAL CUTTING SIMULATIONS BY OPTIMIZATION STRATEGIES
  • DOI:
    10.17973/mmsj.2019_11_2019067
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    T. Bergs;M. Hardt;D. Schraknepper
  • 通讯作者:
    T. Bergs;M. Hardt;D. Schraknepper
Investigations on the Application of the Downhill-Simplex-Algorithm to the Inverse Determination of Material Model Parameters for FE-Machining Simulations
  • DOI:
    10.1016/j.simpat.2020.102214
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hardt;D. Schraknepper;T. Bergs
  • 通讯作者:
    M. Hardt;D. Schraknepper;T. Bergs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Thomas Bergs, since 7/2019其他文献

Professor Dr.-Ing. Thomas Bergs, since 7/2019的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Thomas Bergs, since 7/2019', 18)}}的其他基金

Methodology for the highly iterative design of production process sequences
生产流程序列高度迭代设计的方法
  • 批准号:
    410193563
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Model-based control of surface integrity in hard turning
基于模型的硬车削表面完整性控制
  • 批准号:
    401819829
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Development of a 3D multiphysics model to analyse the thermo-mechanical effect of coolants in metal cutting
开发 3D 多物理场模型来分析金属切削中冷却剂的热机械效应
  • 批准号:
    403801854
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Characterization and simulation of the fracture behavior of CBN grain types as a function of crystal structure, grain orientation and dressing parameters
CBN 晶粒类型断裂行为随晶体结构、晶粒取向和修整参数变化的表征和模拟
  • 批准号:
    391202973
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of a Cutting Force Model for the Optimization of the Process Design of Bevel Gear Grinding
开发用于优化锥齿轮磨削工艺设计的切削力模型
  • 批准号:
    386689474
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Numerical modeling of the thermo-mechanical contact in grinding
磨削中热机械接触的数值模拟
  • 批准号:
    394846749
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Tribological Performance of Rolling Contacts Produced by EDM
EDM 生产的滚动接触件的摩擦学性能
  • 批准号:
    387674136
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamental research on a double beam laser process for metals
双束激光金属加工基础研究
  • 批准号:
    370349951
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of the thermomechanical interactions in the shear zone during the fine blanking of heated high strength sheet materials (HotFib)
研究加热高强度板材精冲过程中剪切区的热机械相互作用 (HotFib)
  • 批准号:
    372316085
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theory of chip formation in grinding of fiber reinforced ceramics with porous matrix
多孔基体纤维增强陶瓷磨削切屑形成理论
  • 批准号:
    374031440
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Next-generation KYC banking verification via embedded smart keyboard
通过嵌入式智能键盘进行下一代 KYC 银行验证
  • 批准号:
    10100109
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Automated Formal Verification of Quantum Protocols for the Quantum Era
量子时代量子协议的自动形式验证
  • 批准号:
    24K20757
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
  • 批准号:
    2348334
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Trust Matrix: A blockchain-driven system for business identity verification, increasing business efficiency and reducing fraud.
Trust Matrix:区块链驱动的企业身份验证系统,可提高业务效率并减少欺诈。
  • 批准号:
    10099958
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
AF: Small: Verification Complexities of Self-Assembly Systems
AF:小:自组装系统的验证复杂性
  • 批准号:
    2329918
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research on Computable Analysis and Verification of Efficient Exact Real Computation
高效精确实数计算的可计算分析与验证研究
  • 批准号:
    24K20735
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
  • 批准号:
    2330974
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了