Implementing Real Ab Initio in Out-of-Equilibrium Dynamics

在非平衡动力学中实现真正的从头算

基本信息

  • 批准号:
    369301287
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2017
  • 资助国家:
    德国
  • 起止时间:
    2016-12-31 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The tremendous growth of the information-based society has strongly increased the demand for high-speed electronic devices with low energy consumption. A promising approach is spintronics, in which the spin instead of the charge of the electron is used as information carrier. To realize the required high-speed of spin operations, systems that can be driven strongly and quickly out-of-equilibrium are needed. The mechanisms underlying these fast out-of-equilibrium processes are however poorly understood so far.The aim of this research project is to achieve a new level of understanding by deriving non-equilibrium theory to describe the ultrafast relaxation processes between phonons, electrons, and spin excitations in real materials. To reach this objective I will combine advanced ab initio methods with atomistic and microscopic simulations and thereby develop innovative multiscale theories for the dynamics in laser excited materials on ultrashort time scales beyond current models.I will derive a new model including non-thermal relaxation processes to explore the ultrafast, non-equilibrium interaction of electrons and phonons in typical systems as gold and graphite. Furthermore, I will study the response to ultrafast laser excitation in heterostructure materials. In particular, I want to study light induced spin torques in metallic heterostructures to explore the relevant mechanisms for new applications, as for example metallic terahertz emitters and explore the occurring magnon spin currents after laser excitation of metal/YIG bi- and trilayers. In addition, I shall develop new models to explore the various microscopic mechanisms of electronic spin relaxation in spin dynamics as well as study the coupled dynamics of spin and orbital moments.
随着信息化社会的迅猛发展,对高速、低能耗的电子器件的需求日益增长。自旋电子学是一种很有前途的方法,它使用自旋而不是电子的电荷作为信息载体。为了实现所要求的高速自旋操作,需要能够强烈和快速地驱动出平衡的系统。然而,到目前为止,人们对这些快速非平衡过程背后的机制知之甚少。本研究项目的目的是通过推导非平衡理论来描述真实材料中声子、电子和自旋激发之间的超快弛豫过程,从而达到一个新的认识水平。为了实现这一目标,我将把先进的从头算方法与原子和微观模拟相结合,从而开发出超越当前模型的超短时间尺度激光激发材料动力学的创新多尺度理论。我将推导一个新的模型,包括非热弛豫过程,以探索典型系统中电子和声子的超快,非平衡相互作用,如金和石墨。此外,我将研究异质结构材料对超快激光激发的响应。特别是,我想研究金属异质结构中的光诱导自旋力矩,以探索新应用的相关机制,例如金属太赫兹发射体,并探索激光激发金属/YIG双层和三层后发生的磁振子自旋电流。此外,我将开发新的模型,探索自旋动力学中电子自旋弛豫的各种微观机制,并研究自旋和轨道矩的耦合动力学。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Terahertz spin dynamics driven by a field-derivative torque
由场导数扭矩驱动的太赫兹自旋动力学
  • DOI:
    10.1103/physrevb.100.060409
  • 发表时间:
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    R. Mondal;A. Donges;U. Ritzmann;P. M. Oppeneer;U. Nowak
  • 通讯作者:
    U. Nowak
Domain wall dynamics due to femtosecond laser-induced superdiffusive spin transport
  • DOI:
    10.1103/physrevb.101.174418
  • 发表时间:
    2020-05-14
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Balaz, Pavel;Carva, Karel;Oppeneer, Peter M.
  • 通讯作者:
    Oppeneer, Peter M.
Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin–orbit torques
  • DOI:
    10.1038/s41928-018-0114-0
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    U. Ritzmann;Stephan von Malottki;Joo-Von Kim;S. Heinze;J. Sinova;B. Dupé
  • 通讯作者:
    U. Ritzmann;Stephan von Malottki;Joo-Von Kim;S. Heinze;J. Sinova;B. Dupé
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Ulrike Ritzmann其他文献

Dr. Ulrike Ritzmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了