Rationalizing Recommendations

合理化建议

基本信息

项目摘要

In many situations, experts and laymen receive recommendations on how to act, which decisions to take, or which products to purchase. Very often, however, the circumstances and arguments that led to a particular recommendation are not transparent. While in most cases there are various alternatives to choose from, receivers of recommendations are usually under pressure to act, thus lacking time and other resources to systematically compare the recommended option against all available alternatives.Our goal is to develop a computational methodology that, given a recommendation, is able to perform a task we call rationalizing recommendations, which consists in setting the recommended option into a more comprehensive context by systematically comparing it to other available options, and generating a comparative argumentative summary describing the relative pros and cons of the recommendation. To this end, we will develop novel information extraction solutions that employ probabilistic graphical models to extract relevant evidence from scientific literature. We will extend current information retrieval methods to retrieve evidence relevant for generating arguments from heterogeneous document collections. Based on the extracted evidence, our method will generate arguments in favour or against a certain recommendation in comparison to other options with respect to a particular dimension or aspect. To this end, we propose a new data structure called Hierarchical Argumentation Tree that provides the backbone of a hierarchically structured argument. Taking preferences between different comparative dimensions into account, the tree can be used to infer under which assumptions the given recommendation can be embedded into a valid argument. We will further develop a template-based natural language generation approach which, based on this hierarchical argumentation tree and the preferences made explicit therein, generates a complex yet concise argument in natural language that makes explicit and transparent under which conditions and assumptions the recommended option is the best one compared to other options, thus supporting decision making. As proof of concept, we apply our methodology to the case of therapy recommendations in the context of evidence-based medicine. In fact, medical decision making aiming at the optimal therapy for a patient is often based on recommendations accompanying a laboratory diagnosis. By rendering the assumptions and premises underlying such a recommendation explicit and traceable, our methodology could support physicians in making more informed decisions that are backed by the level-of-evidence of a therapy as described in the current scientific literature. We intend to develop our system in close cooperation with medical experts who will support us in requirement and use case definition, data annotation as well as the final evaluation of the system.
在许多情况下,专家和外行都会收到关于如何行动、做出哪些决定或购买哪些产品的建议。然而,导致某一特定建议的情况和论据往往不透明。虽然在大多数情况下有各种备选方案可供选择,但建议的接受者通常在采取行动的压力下,因此缺乏时间和其他资源来系统地将建议的备选方案与所有可用的备选方案进行比较。我们的目标是开发一种计算方法,在给定建议的情况下,能够执行我们称之为合理化建议的任务,这包括通过系统地将推荐选项与其他可用选项进行比较,将推荐选项设置为更全面的上下文中,并生成描述建议的相对优缺点的比较论证摘要。为此,我们将开发新的信息提取解决方案,利用概率图模型从科学文献中提取相关证据。我们将扩展当前的信息检索方法,以检索与从异构文档集合中生成参数相关的证据。基于提取的证据,我们的方法将生成支持或反对某一建议的论据,并将其与特定维度或方面的其他选项进行比较。为此,我们提出了一种新的数据结构,称为分层论证树,它提供了分层结构论证的主干。考虑到不同比较维度之间的偏好,树可以用来推断在哪些假设下给定的建议可以嵌入到有效的论证中。我们将进一步开发一种基于模板的自然语言生成方法,该方法基于这种分层论证树和其中明确的偏好,用自然语言生成复杂而简洁的论证,在哪些条件和假设下,与其他选项相比,推荐的选项是最好的,从而支持决策。作为概念的证明,我们将我们的方法应用于循证医学背景下的治疗建议。事实上,针对患者的最佳治疗方案的医疗决策通常是基于实验室诊断的建议。通过使这些建议的假设和前提明确且可追溯,我们的方法可以支持医生在当前科学文献中描述的治疗证据水平的支持下做出更明智的决定。我们打算与医学专家密切合作开发我们的系统,他们将在需求和用例定义、数据注释以及系统的最终评估方面支持我们。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Philipp Cimiano其他文献

Professor Dr. Philipp Cimiano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Philipp Cimiano', 18)}}的其他基金

Continuous quality control for research data to ensure reproducibility: an institutional approach (CONQUAIRE)
对研究数据进行持续质量控制以确保可重复性:一种制度方法 (CONQUAIRE)
  • 批准号:
    277747081
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research data and software (Scientific Library Services and Information Systems)
Perspectivized Argument Knowledge Graphs for Deliberation Support
用于审议支持的透视论证知识图
  • 批准号:
    455912133
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coordination Funds
协调基金
  • 批准号:
    398038679
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
  • 批准号:
    10103541
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Supporting racialized youth experiencing technology-facilitated sexual violence and its impact on mental health: Engaging youth in co-designing policy and practice recommendations
支持遭受技术性暴力及其对心理健康影响的种族青年:让青年参与共同设计政策和实践建议
  • 批准号:
    499283
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Aligning personalised news recommendations with the public interest
将个性化新闻推荐与公众利益结合起来
  • 批准号:
    FT230100475
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Developing priorities and recommendations for integrating EDIIA into physical activity and health research
制定将 EDIIA 纳入身体活动和健康研究的优先事项和建议
  • 批准号:
    480713
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
Recommendations for culturally sensitive and intersectional practice in suicide prevention intervention for public safety personnel : a qualitative approach.
对公共安全人员自杀预防干预中文化敏感和跨部门实践的建议:定性方法。
  • 批准号:
    488189
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Explainable AI recommendations for infectious disease management: providing clear, robust, and reliable communication to users
针对传染病管理的可解释人工智能建议:为用户提供清晰、稳健和可靠的沟通
  • 批准号:
    10073509
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
  • 批准号:
    2334193
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Turning Recommendations into Reality: Knowledge Mobilization for the International Donation and Transplantation Legislative and Policy Forum
将建议变为现实:国际捐赠和移植立法和政策论坛的知识动员
  • 批准号:
    487793
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
Aerobic Exercise Recommendations to Optimize Best Practices In Care after Stroke: AEROBICS 2024 Update
用于优化中风后护理最佳实践的有氧运动建议:AEROBICS 2024 更新
  • 批准号:
    480888
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
UNTWIST: Policy Recommendations to Regain Feminist Losers as Mainstream Voters
UNTWIST:让女权主义失败者重新成为主流选民的政策建议
  • 批准号:
    10066730
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了