Ultra-high Cycle Fatigue Characterization and Ultra-slow Crack Growth of Titanium Alloys

钛合金超高周疲劳表征和超慢裂纹扩展

基本信息

  • 批准号:
    19F19730
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-07-24 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

In ultra-high cycle fatigue failure, ultra-slow crack growth of small cracks has great contribution to fatigue life. Micron-sized notches were prefabricated on the specimen surface by focused ion beam (FIB) technology. Ultrasonic fatigue tests (20 kHz) were suspended at specific life intervals and field emission scanning electron microscope (SEM) was used to carefully observe the fatigue crack growth behavior at end of the notches. Two types of bimodal microstructures and different cyclic stress amplitudes were employed to investigate the ultra-slow crack growth behavior of the alloys. The path of small fatigue cracks is relatively straight at the primary alpha grain, whilst it is more tortuous at the colony. The colony has a higher resistant to the growth of small fatigue cracks than the primary alpha grain in the bimodal microstructure. If small fatigue cracks pass through very few colonies, fatigue crack growth rate will be higher, even if a lower cyclic stress was applied. Owing to the difference in local microstructure characteristics, the growth rate data of small fatigue cracks show obvious dispersity. The higher volume fraction of colonies should be beneficial to improve the growth resistance of small fatigue cracks. In addition, we also found that deformation twins that were induced by the laser shock peening, can retard the growth of small fatigue cracks. These results may provide insightful ideas for the anti-fatigue microstructure design of titanium alloys.
在超高周疲劳破坏中,小裂纹的超慢裂纹扩展对疲劳寿命有很大贡献。采用聚焦离子束(FIB)技术在试样表面预制了100 μ m大小的缺口。在特定的寿命间隔内暂停超声疲劳试验(20 kHz),并使用场发射扫描电子显微镜(SEM)仔细观察缺口端部的疲劳裂纹扩展行为。采用两种双峰组织和不同的循环应力幅研究了合金的超慢裂纹扩展行为。小疲劳裂纹的路径在初级α晶粒处相对较直,而在殖民地处则较为曲折。在双态组织中,殖民地比初生α晶粒具有更高的抗疲劳小裂纹扩展能力。如果小的疲劳裂纹穿过非常少的菌落,则即使施加较低的循环应力,疲劳裂纹扩展速率也将较高。由于局部组织特征的差异,疲劳小裂纹扩展速率数据表现出明显的分散性。较高的菌落体积分数有利于提高疲劳小裂纹的扩展抗力。此外,我们还发现激光冲击强化诱发的形变孪晶可以延缓疲劳小裂纹的扩展。这些结果可为钛合金抗疲劳组织设计提供参考。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultra-high cycle fatigue crack initiation and growth in titanium alloy
钛合金超高周疲劳裂纹萌生和扩展
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kun Yang;Qiang Chen;Qing-Yuan Wang
  • 通讯作者:
    Qing-Yuan Wang
Vacuum retarding and air accelerating effect on the high-cycle and very-high-cycle fatigue behavior of a ZK60 magnesium alloy
真空缓速和空气加速对ZK60镁合金高周和甚高周疲劳行为的影响
  • DOI:
    10.1016/j.matdes.2020.109310
  • 发表时间:
    2021-01-15
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Liu, Yongjie;Chen, Yao;Wang, Qingyuan
  • 通讯作者:
    Wang, Qingyuan
Sichuan University/Chengdu University/Shanghai Jiao Tong University(中国)
四川大学/成都大学/上海交通大学(中国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Competing crack initiation behaviors of a laser additively manufactured nickel-based superalloy in high and very high cycle fatigue regimes
激光增材制造的镍基高温合金在高循环和极高循环疲劳状态下的竞争裂纹萌生行为
  • DOI:
    10.1016/j.ijfatigue.2020.105580
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Yang, Kun;Huang, Qi;Chen, Qiang
  • 通讯作者:
    Chen, Qiang
Sichuan university/Chengdu university(中国)
四川大学/成都大学(中国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

陳 強其他文献

Simultaneous Use of Whitening Effect and Non-reproducibility of Stochastic Noise in Networked Control Systems
在网络控制系统中同时使用白化效应和随机噪声的不可再现性
Ultra-wideband suppression of ground bounce noise using novel-uniplanar compact electromagnetic bandgap structure
利用新型单面紧凑电磁带隙结构超宽带抑制地弹噪声
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G.Yuan;et al.;G. L. Yuan;Asit Baran Panda;Asit Baran Panda;Long Li;陳 強;Long Li;村上仁康;Long Li;Long Li
  • 通讯作者:
    Long Li
水平2成分受信電力プロファイルに基づく海中微小垂直ダイポール位置推定の疑似スケールモデル実験
基于水平二分量接收功率剖面的水下微垂直偶极子位置估计伪尺度模型实验
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐瀬 亮太;石井 望;高橋 応明;陳 強;吉田 弘
  • 通讯作者:
    吉田 弘
A Numerical Study on Large-scale Periodic Array Antenna by FMM and FFT
基于FMM和FFT的大规模周期阵列天线数值研究
疑似スケールモデル実験系による複数海面位置受信電力プロファイルを利用した海中位置推定法の検証
使用伪比例模型实验系统验证使用多个海面位置接收功率分布的水下位置估计方法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐瀬 亮太;石井 望;高橋 応明;陳 強;吉田 弘
  • 通讯作者:
    吉田 弘

陳 強的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('陳 強', 18)}}的其他基金

Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
  • 批准号:
    22KF0310
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
高効率の無線電力伝送システムの開発
开发高效无线电力传输系统
  • 批准号:
    22KF0020
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
高効率海中・海上混合電磁波伝送路の構築
高效水下/海上混合电磁波传输线建设
  • 批准号:
    23H01407
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bismuth titanate-based high temperature piezoceramics: Domain structure and polarization dynamics
钛酸铋基高温压电陶瓷:磁畴结构和极化动力学
  • 批准号:
    22KF0290
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Ultra-high cycle fatigue strength of hierarchical anisotropic nanostructured alloys by precision structural analysis
精密结构分析分级各向异性纳米结构合金的超高周疲劳强度
  • 批准号:
    22K03828
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of Crack Nucleation in Titanium Alloys with Metastable Microstructures
亚稳态钛合金中裂纹形核的表征
  • 批准号:
    20F40737
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
準安定構造を持つチタン合金のき裂発生および伝ぱ挙動の解明
阐明具有亚稳态结构的钛合金中的裂纹萌生和扩展行为
  • 批准号:
    20F20737
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
アレーアンテナ素子間の減結合用合成回路の研究
阵列天线阵元间去耦合成电路研究
  • 批准号:
    19F19350
  • 财政年份:
    2019
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Characterization of deformation microstructure of Mg alloys containing LPSO structure via transmission electron microscopy
含LPSO结构镁合金变形显微组织的透射电镜表征
  • 批准号:
    17F17732
  • 财政年份:
    2017
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
LPSO相を有する高強度Mg-Zn-Y合金の超高サイクル疲労破壊機構の解明
LPSO相高强Mg-Zn-Y合金超高周疲劳断裂机理的阐明
  • 批准号:
    16F16809
  • 财政年份:
    2016
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

Ultra-high cycle fatigue strength of hierarchical anisotropic nanostructured alloys by precision structural analysis
精密结构分析分级各向异性纳米结构合金的超高周疲劳强度
  • 批准号:
    22K03828
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了