Integrating hydrological, hydro-geological, soil-physical and hydrodynamic processes by means of particle based simulations

通过基于粒子的模拟集成水文、水文地质、土壤物理和水动力过程

基本信息

项目摘要

The integration of hydrological processes into models is challenging due to diverse operation scales, such as spatial and temporal scales as well as the complexity levels of the processes. Nonetheless, several tasks in hydrosystem modelling require holistic approaches with a reliable scientific description and its associated simulation concepts of the interaction of water with continuous or discrete media. This includes for instance risk assessment with regard to flash floods, where at least a coupling of hydrological and hydrodynamic processes is essential.The aim of the project is the holistic and fully integrated consideration of hydrological, hydro-geological, soil physical and hydrodynamic processes within one model. The model will be developed as a new type of hydrosystem simulation tool by using the grid-free numerical interpolation method SPH (smoothed particle hydrodynamics) in connection with smart scaling methods. The main difference to common Eulerian methods is that the integration in time is performed over the particles and not over the grid. Even though the SPH method is recently wide spread in hydrodynamic applications, a coupling with related hydrological or soil hydraulic processes is not yet considered; though the method has the potential to do so due to its numerical stability and general expandability. The implementation will be achieved by using the GPU-CUDA framework for Nvidia graphic cards.The dynamic scaling is considered to be an innovative key to perform the inevitable integration of water movement processes in real-world environments. The scaling will be achieved by following similarity concepts originated from soil-physics. Information of the soil and the vegetation will be stored in property fields, which contain the specific parameters as distribution functions. The assignment of parameters to the particles with multiple probabilities reflects the variety of natural systems. The density and velocity of the particles are controlled by information transferred via property fields. The density and velocity of the particles control the dynamical scaling.Milestone 1 is a fully functioning modelling system with detailed process descriptions at the plot scale, while already considering the holistic picture of the mentioned disciplines such as water interaction with the vegetation, with the unsaturated and saturated soil zone. Milestone 2 focuses on the transfer of the plot scale modelling system to larger scales with the mentioned scaling methods. Milestone 3 is the application of the model at the catchment scale including the test and validation with observed data (chicken creek). After the validation, we use the integrated modelling system for applications with high interactions between different process scales. The aim is to achieve a reliable and realistic basis for decision makers in interdisciplinary fields such as flash floods or irrigation in order to assess damage potential or need for irrigation.
由于水文过程的时空尺度和复杂程度不同,将其集成到模型中具有挑战性。尽管如此,在水文系统建模的几项任务需要一个可靠的科学描述和相关的模拟概念的水与连续或离散介质的相互作用的整体方法。例如,这包括对山洪暴发的风险评估,在这方面,至少水文和水动力过程的耦合是必不可少的,项目的目的是在一个模型内全面和充分综合地考虑水文、水文地质、土壤物理和水动力过程。该模型将开发作为一种新型的水力系统模拟工具,通过使用无网格的数值插值方法SPH(光滑粒子流体动力学)与智能缩放方法。与普通欧拉方法的主要区别在于,时间积分是在粒子上而不是在网格上进行的。尽管SPH方法最近在水动力学应用中得到广泛传播,但尚未考虑与相关水文或土壤水力过程的耦合;尽管该方法由于其数值稳定性和一般可扩展性而具有这样做的潜力。该实施将通过使用Nvidia图形卡的GPU-CUDA框架来实现。动态缩放被认为是在现实世界环境中执行水运动过程不可避免的集成的创新关键。缩放将通过以下源于土壤物理学的相似性概念来实现。土壤和植被的信息将存储在属性字段中,属性字段包含作为分布函数的特定参数。粒子参数的多重概率分配反映了自然系统的多样性。粒子的密度和速度由通过属性场传递的信息控制。颗粒的密度和速度控制动态缩放。里程碑1是一个功能齐全的建模系统,在地块尺度上有详细的过程描述,同时已经考虑了上述学科的整体情况,如水与植被的相互作用,与非饱和和饱和土壤区。里程碑2的重点是将地块比例模型系统转移到具有上述比例方法的更大比例。里程碑3是模型在流域尺度上的应用,包括用观测数据(鸡溪)进行测试和验证。验证后,我们使用集成建模系统的应用程序之间的高度相互作用不同的过程规模。其目的是为决策者在山洪暴发或灌溉等跨学科领域提供一个可靠和现实的基础,以评估潜在的损害或灌溉需求。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of Hydrological Relevant Parameters by Soil Hydraulic Behaviour
  • DOI:
    10.3390/geosciences9050206
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    P. Kreye;M. Gelleszun;M. Somasundaram;G. Meon
  • 通讯作者:
    P. Kreye;M. Gelleszun;M. Somasundaram;G. Meon
Multi scale smoothed particle hydrodynamics using particle agglomeration for simulating rainfall-runoff processes
使用颗粒团聚模拟降雨径流过程的多尺度平滑颗粒流体动力学
  • DOI:
    10.5194/egusphere-egu2020-18951
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Somasundaram;Gelleszun
  • 通讯作者:
    Gelleszun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Günter Meon, since 8/2019其他文献

Professor Dr.-Ing. Günter Meon, since 8/2019的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Field-scale quantification of dynamic physical properties in shrink-swell soils for improved hydrological prediction
职业:对收缩膨胀土壤的动态物理特性进行现场规模量化,以改进水文预测
  • 批准号:
    2337711
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: A hydrological seesaw and its effect on alkalinity dynamics in estuaries along a climate gradient
合作研究:水文跷跷板及其对气候梯度河口碱度动态的影响
  • 批准号:
    2319434
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Impact of climatic interannual variabilities and extreme weather on hydrological cycles in the Panama Canal Basin
气候年际变化和极端天气对巴拿马运河流域水文循环的影响
  • 批准号:
    23KK0077
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Grass half full? Adapting the hydrological management of grazed lowland peatlands to balance climate change mitigation with agriculture
草半满?
  • 批准号:
    2890740
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: A convergent and transformative approach to understanding human access to groundwater and its impact on the hydrological cycle
职业:一种融合和变革的方法来了解人类获取地下水及其对水文循环的影响
  • 批准号:
    2234213
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: A hydrological seesaw and its effect on alkalinity dynamics in estuaries along a climate gradient
合作研究:水文跷跷板及其对气候梯度河口碱度动态的影响
  • 批准号:
    2319435
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GP-UP: Collaborative Research: Developing a diverse hydrology workforce through an undergraduate hydrological research experience in a coastal California watershed
GP-UP:合作研究:通过加州沿海流域的本科生水文学研究经验培养多元化的水文学队伍
  • 批准号:
    2330988
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Post-hurricane recovery of island freshwater lenses: Understanding the impact of social and hydrological dynamics
合作研究:IRES 第一轨:飓风后岛屿淡水透镜体的恢复:了解社会和水文动态的影响
  • 批准号:
    2246400
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Exploration of Spaceborne Coherent GNSS Reflectometry for High Resolution Hydrological and Ice Observation
星载相干GNSS反射仪高分辨率水文冰观测探索
  • 批准号:
    2891764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了