Next Generation Deep Drawing Using Smart Observers, Close-Loop Control, and 3D-Servo-Press

使用智能观察器、闭环控制和 3D 伺服压力机的下一代深拉伸

基本信息

项目摘要

The objectives of this collaborative research project are to (i) exploit the flexibility of a 3D-servo-press to improve the formability of sheet metal components, (ii) establish the scientific understanding to identify non-linear 3D blank holder (BH) movements causing non-linear deformation-paths for material formability improvements, (iii) determine adequate sensor/observer structures to predict wrinkling and tearing failures in sheet metal components, and (iv) create a framework for Industry 4.0 process implementation and benefits. With the aid of the automatic adjustment of processes with respect to variations in the material and process conditions in real time failure sheet metal can be avoided, improvements in the dimensional accuracy and final properties of products can be achieved, and ultimately scrap-rates can be reduced. The research will capitalize on the strengths of the two institutions with respect to forming machines at PtU and material characterization and modeling at UNH. Personnel exchanges will provide exceptional educational and cultural opportunities for the researchers involved and will assure the success of the collaboration. In this research, Industry 4.0 components, i.e. sensors/observers, control systems, and actuators, will be investigated to improve sheet metal forming. The specific tasks that will be completed are: (T1) Characterize the material behavior, including the predictions of both tearing and wrinkling failures using an acoustic emission sensor. This task also includes understanding failure in the material when subjected to non-linear deformation-paths which are common in sheet metal forming processes. (T2) A novel deep drawing process enabling non-linear BH-movements will be established and equipped with control and observer systems. Specially designed tooling will allow various non-linear deformation-paths to be achieved through non-linear BH movements of a unique 3D-servo-press. (T3) Conduct numerical simulations to determine beneficial non-linear 3D BH movements offline. For improved real-time process control, reduced-order models for selected observers will also be created and validated. They allow for predicting key process parameters that cannot be measured experimentally, e.g., stress and strain values, based on an evaluation of sensor data. (T4) Control schemes and systems will be compared with respect to product properties and process robustness. These include feed-forward and different closed-loop control approaches to determine the desired actuator trajectories.The knowledge gained from this research will benefit Industry 4.0 efforts and improve product design and manufacturing.
该合作研究项目的目标是(i)利用3D伺服压力机的灵活性来提高金属板件的可成形性,(ii)建立科学的理解来识别非线性3D坯料保持器(BH)运动引起的非线性变形路径,以提高材料的可成形性,(iii)确定适当的传感器/观察器结构,以预测钣金部件中的撕裂和撕裂故障,以及(iv)为工业4.0流程实施和效益创建框架。借助于相对于真实的时间内的材料和工艺条件的变化的工艺的自动调节,可以避免失效的金属板,可以实现产品的尺寸精度和最终性能的改进,并且最终可以降低废品率。该研究将利用这两个机构在PtU成型机和UNH材料表征和建模方面的优势。人员交流将为有关研究人员提供特殊的教育和文化机会,并将确保合作的成功。在这项研究中,工业4.0组件,即传感器/观察器,控制系统和执行器,将被调查,以改善金属板材成形。将完成的具体任务是:(T1)表征材料行为,包括使用声发射传感器预测撕裂和撕裂故障。该任务还包括理解材料在经受非线性变形路径时的失效,这在金属板成形过程中是常见的。(T2)将建立一种新的深拉工艺,使非线性BH运动,并配备控制和观察系统。特殊设计的工具将允许通过独特的3D伺服压力机的非线性BH运动来实现各种非线性变形路径。(T3)进行数值模拟以离线确定有益的非线性3D BH运动。为了改进实时过程控制,还将为选定的观察员建立和验证降阶模型。它们允许预测无法通过实验测量的关键工艺参数,例如,应力和应变值,基于传感器数据的评估。(T4)控制方案和系统将在产品性能和工艺稳健性方面进行比较。其中包括前馈和不同的闭环控制方法,以确定所需的致动器轨迹。从这项研究中获得的知识将有利于工业4.0的努力,并改善产品设计和制造。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robustness of deep-drawing finite-element simulations to process variations
  • DOI:
    10.1007/s12289-022-01695-3
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kelin Chen;A. Breunig;J. Ha;B. Kinsey;P. Groche;Y. Korkolis
  • 通讯作者:
    Kelin Chen;A. Breunig;J. Ha;B. Kinsey;P. Groche;Y. Korkolis
Effectiveness of different closed-loop control strategies for deep drawing on single-acting 3D Servo Presses
单动 3D 伺服压力机拉深时不同闭环控制策略的有效性
  • DOI:
    10.1016/j.cirp.2022.04.072
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Groche, Peter;Breunig, Alexander;Chen, Kelin;Molitor, Dirk A.;Ha, Jinjin;Kinsey, Brad L.;Korkolis, Yannis P.
  • 通讯作者:
    Korkolis, Yannis P.
AA1100-O cylindrical cup-drawing using 3D servo-press
使用3D伺服压力机进行AA1100-O圆柱杯拉深
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Peter Groche其他文献

Professor Dr.-Ing. Peter Groche的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Peter Groche', 18)}}的其他基金

Improved process stability in three-dimensional paper forming due to numerical modeling of the material inhomogeneity
由于材料不均匀性的数值模拟,提高了三维纸张成型的工艺稳定性
  • 批准号:
    415796511
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamentals of process design for dimensionally accurate roll forming of asymmetrical profile geometries
非对称型材几何形状的尺寸精确滚压成型的工艺设计基础
  • 批准号:
    407937637
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimization of tool use in sheet metal forming
金属板材成形中刀具使用的优化
  • 批准号:
    290017281
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Prestressed, hybrid stringer sheet structures
预应力混合纵梁板结构
  • 批准号:
    275326014
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Wear analysis and prediction for oscillating longitudinal gear forming
振动纵向齿轮成形磨损分析与预测
  • 批准号:
    274926593
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Methods for the design of formed metal parts with printed sensors
带印刷传感器的成型金属零件的设计方法
  • 批准号:
    279559208
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Production of Multi-Directional Widened Profiles
多向加宽型材的生产
  • 批准号:
    254845520
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Transfer of a friction model for cold bulk metal forming in industrial practice
工业实践中块状金属冷成型摩擦模型的传递
  • 批准号:
    233636924
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Intelligente Werkzeuge für das Trocken-Scherschneiden von Verbundwerkstoffen
复合材料干剪切智能工具
  • 批准号:
    219335077
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation and enhancement on bonding by cold bulk metal forming processes
块状金属冷成形工艺粘合的研究和增强
  • 批准号:
    227710263
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of next generation ISFET pH sensor to identify upwelling area of deep ocean circulation
开发下一代 ISFET pH 传感器来识别深海环流的上升流区域
  • 批准号:
    23K17464
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Building the next generation of intelligent machines with cooperative deep learning.
通过协作深度学习构建下一代智能机器。
  • 批准号:
    RGPIN-2022-05088
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A deep longitudinal analysis of next generation influenza vaccines in older adults
对老年人使用下一代流感疫苗的深入纵向分析
  • 批准号:
    10544172
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Next-generation audio and speech processing architectures based on deep learning
基于深度学习的下一代音频和语音处理架构
  • 批准号:
    22H03614
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Next Generation Software-defined Intelligent Radio Access Network (SIRAN) - Leveraging Deep Learning for Autonomous and Intelligent Service Provisioning
下一代软件定义智能无线接入网络 (SIRAN) - 利用深度学习实现自主和智能服务提供
  • 批准号:
    RGPIN-2019-06348
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Building the next generation of intelligent machines with cooperative deep learning.
通过协作深度学习构建下一代智能机器。
  • 批准号:
    DGECR-2022-00422
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
A deep longitudinal analysis of next generation influenza vaccines in older adults
对老年人使用下一代流感疫苗的深入纵向分析
  • 批准号:
    10342393
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    22H03643
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Precision cosmology with next-generation wide and deep cosmological surveys
精确宇宙学与下一代广泛和深入的宇宙学调查
  • 批准号:
    21J00011
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了