Coupled Fluid Dynamic And Poro-Elastic Effects During Gas Flow In Nanoporous Media: Experiments And Multi-Scale Modelling

纳米多孔介质中气体流动过程中的耦合流体动力学和孔隙弹性效应:实验和多尺度建模

基本信息

项目摘要

The project will investigate fluid-dynamic and poro-elastic effects during gas transport in micro-/nanoporous media with special focus on sedimentary rocks. We will use a combined approach, involving laboratory experiments of gas transport on artificial and natural micro-/nanoporous media (RWTH Aachen University) and multiscale modeling of the observed/anticipated effects (Tsinghua University). Both partner groups contribute long-term research experience in their respective fields and have started a successful and fruitful co-operation lately.The joint research is targeting issues of fluid dynamics and poro-elastic deformations in low-permeability rocks, including slip flow, Knudsen diffusion, real gas effects, pressure-dependence of viscosity, stress-dependence of permeability coefficients due to deformation/modification of the transport pore system, and dependence of gas and water sorption/desorption on fluid flow. Permeability coefficients of micro- and nanoporous media are not invariable material properties but, particularly when measured with different gases, are very sensitive to changes in the boundary conditions of fluid flow tests (pressure, pressure gradients, changes in effective stress). Information on the pore system properties can be derived by systematic variation of experimental conditions and the gases used.The proposed research will first elucidate fundamental relationships of gas transport in narrow, deformable pores by using artificial pore systems (nanocapillaries, defined micro-slits in materials with different hardness). Subsequently measurements on selected lithotypes will be conducted and evaluated. An improved understanding of the interplay between pore size-dependent rheologic effects and the mechanical deformation of the pore system will greatly improve predictions of gas flow processes on different scales, thus enabling upscaling from the nm (laboratory) to km-range (field) scale. While many fluid transport-modeling approaches have to rely on published data for validation of their results, in the proposed project the experimental program will be adapted flexibly through direct feedback between modelers and experimentalists. The quality and reproducibility of the experimental results will thus be ensured and the consistency of the interpretations and models verified.
该项目将研究气体在微/纳米多孔介质中传输过程中的流体动力学和孔隙弹性效应,特别关注沉积岩。我们将使用一种综合的方法,包括人工和天然微/纳米多孔介质(RWTH亚琛大学)和观察到的/预期的影响(清华大学)的多尺度建模的气体传输的实验室实验。双方在各自的领域积累了长期的研究经验,最近开始了成功而富有成果的合作。联合研究的目标是低渗透岩石中的流体动力学和孔隙弹性变形问题,包括滑移流,Knudsen扩散,真实的气体效应,粘度的压力依赖性,由于运输孔隙系统的变形/修改导致的渗透系数的应力依赖性,以及气体和水吸附/解吸对流体流动的依赖性。微米和纳米多孔介质的渗透系数不是不变的材料性质,但是,特别是当用不同气体测量时,对流体流动测试的边界条件(压力、压力梯度、有效应力的变化)的变化非常敏感。通过系统地改变实验条件和使用的气体,可以获得有关孔隙系统性质的信息。拟议的研究将首先阐明通过使用人工孔隙系统(纳米帽,在不同硬度的材料中定义的微缝)在狭窄的可变形孔隙中气体输运的基本关系。随后将对选定的岩石类型进行测量和评价。孔径依赖的流变效应和孔隙系统的机械变形之间的相互作用的理解将大大提高不同尺度上的气体流动过程的预测,从而使放大从纳米(实验室)到公里范围(现场)的规模。虽然许多流体输运建模方法必须依赖于已公布的数据来验证其结果,但在拟议的项目中,将通过建模者和实验者之间的直接反馈灵活地调整实验程序。因此,将确保实验结果的质量和可重复性,并验证解释和模型的一致性。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compaction effects on permeability of spherical packing
压实对球形填料渗透性的影响
  • DOI:
    10.1108/ec-01-2020-0015
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Duzhou Zhang;Zhiguo Tian;Zhiqiang Chen;Dengyun Wu;Gang Zhou;Shaohua Zhang;Moran Wang
  • 通讯作者:
    Moran Wang
LATTICE BOLTZMANN MODEL FOR UPSCALING OF FLOW IN HETEROGENEOUS POROUS MEDIA BASED ON DARCY'S LAW
基于达西定律的异质多孔介质流动升级的格子玻尔兹曼模型
  • DOI:
    10.1615/jpormedia.2019023331
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
  • 通讯作者:
Interfacial settling mode and tail dynamics of spherical-particle motion through immiscible fluids interfaces
  • DOI:
    10.1016/j.ces.2020.116091
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Zhiqiang Chen;Moran Wang;Shiyi Chen
  • 通讯作者:
    Zhiqiang Chen;Moran Wang;Shiyi Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Ralf Littke, since 7/2020其他文献

Professor Dr. Ralf Littke, since 7/2020的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

随机进程代数模型的Fluid逼近问题研究
  • 批准号:
    61472343
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
  • 批准号:
    11275269
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Map Paravascular Fluid Dynamic Signatures of Key Aging and AD Processes Using Dynamics Diffusion-Weighted Imaging
使用动力学扩散加权成像绘制关键衰老和 AD 过程的血管旁流体动态特征
  • 批准号:
    10739365
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Modelling the Effects of Fluid-Structure Dynamic Interaction on Aquatic Plants
模拟流固动力相互作用对水​​生植物的影响
  • 批准号:
    2786466
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Elucidation of the Relationship between Cavitation Dynamic Characteristics and Flow toward the Realization of an Innovative Fluid Transport System
阐明空化动态特性与流动之间的关系,以实现创新的流体传输系统
  • 批准号:
    22K03905
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fluid dynamic risk measurement of LA thrombus after lung cancer surgery
肺癌术后左心房血栓的流体动力学风险测量
  • 批准号:
    22K09009
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fluid Models for Stochastic Dynamic Transportation Problems
随机动态运输问题的流体模型
  • 批准号:
    568131-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Fluid erosion and dynamic fatigue characteristics of high-pressure cold sprayed aerospace gas turbine engines
高压冷喷涂航空航天燃气涡轮发动机流体侵蚀与动态疲劳特性
  • 批准号:
    576835-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Reducing risks and costs of in-stream tidal energy using multi-scale computational fluid dynamic simulation
使用多尺度计算流体动力学模拟降低河内潮汐能的风险和成本
  • 批准号:
    RGPIN-2020-04704
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic of active fluid flow
主动流体流动的动态
  • 批准号:
    RGPIN-2019-05156
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic of active fluid flow
主动流体流动的动态
  • 批准号:
    RGPIN-2019-05156
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了