Spintronics of helical edge states interacting with a quantum magnet
与量子磁体相互作用的螺旋边缘态的自旋电子学
基本信息
- 批准号:392402582
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The existence of helical edge states is a key feature of a two-dimensional topological insulator. These edge states are immune against single-particle backscattering in the absence oftime-reversal symmetry breaking felds. Placing a magnetic insulator in proximity to the helical edge states, the Exchange field will open a gap in the helical edge state spectrum.Surprisingly, when the magnet has its own dynamics with a properly aligned easy-plane anisotropy, the application of a voltage bias sets the magnet in a precessional mode in which the magnet pumps charge in such a way that the quantized quantum spin Hallconductance is restored, in spite of the presence of a gap in the excitation spectrum of the helical edge. This leads to intriguing transport and noise properties, and was proposed to bea platform for the realization of an adiabatic quantum motor.Building on our previous joint work [Silvestrov, Recher, and Brouwer, Phys. Rev. B 93, 205130 (2016)], we here propose to extend the study of this remarkable system into new directions,such as thermoelectric effects, and consider aspects beyond the idealized model description used in previous publications by us and others. Specifically, in a first set of subprojects we address thermoelectric applications of an easy-plane magnetic insulator exchange-coupled to a helical edge, and device applications such as "thermomagnetization", a "thermal quantum Motor", and a mesoscopic "electron cooler". Other directions of research here include nonlinear transport, low frequency noise and magnetization fluctuations as well as quantum interference effects. The second half of the proposal will be devoted to generalizations of theidealized model. We plan to use the Landau-Lifshitz equation for the description of the current/bias driven dynamics of a Setup with less symmetries than in the original publications. New interesting features in current-voltage characteristics and magnetization dynamics are expected. Other proposed Problems include the case of a magnet with several degrees of freedom and a metallic magnet.
螺旋边缘态的存在是二维拓扑绝缘子的一个重要特征。在没有时间反转对称性破缺场的情况下,这些边缘态不受单粒子后向散射的影响。在螺旋边缘态附近放置一个磁性绝缘体,交换场将在螺旋边缘态光谱中打开一个间隙。令人惊讶的是,当磁铁具有适当排列的易平面各向异性时,施加电压偏置使磁铁处于进动模式,在进动模式中,磁铁以这样一种方式泵出电荷,从而恢复量子化的量子自旋霍尔电导,尽管在螺旋边缘的激发谱中存在间隙。这导致了有趣的传输和噪声特性,并被提出作为实现绝热量子电机的平台。基于我们之前的联合研究[Silvestrov, Recher, and browwer, Phys]。Rev. B 93, 205130(2016)],我们在此建议将这一非凡系统的研究扩展到新的方向,例如热电效应,并考虑超出我们和其他人在先前出版物中使用的理想化模型描述的方面。具体来说,在第一组子项目中,我们将讨论易平面磁性绝缘体交换耦合到螺旋边缘的热电应用,以及诸如“热磁化”,“热量子马达”和介观“电子冷却器”等设备应用。其他研究方向包括非线性输运、低频噪声和磁化涨落以及量子干涉效应。提案的后半部分将致力于理想化模型的概括。我们计划使用Landau-Lifshitz方程来描述比原始出版物中更少对称性的装置的电流/偏置驱动动力学。期望在电流-电压特性和磁化动力学方面有新的有趣的特性。其他提出的问题包括具有几个自由度的磁体和金属磁体的情况。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anomalous equilibrium currents for massive Dirac electrons
大量狄拉克电子的反常平衡电流
- DOI:10.1103/physrevb.100.115404
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:P.G. Silvestrov;P. Recher
- 通讯作者:P. Recher
Interference effects induced by a precessing easy-plane magnet coupled to a helical edge state
- DOI:10.1103/physrevb.103.115142
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Kevin A. Madsen;P. Brouwer;P. Recher;P. Silvestrov
- 通讯作者:Kevin A. Madsen;P. Brouwer;P. Recher;P. Silvestrov
Valley splitter and transverse valley focusing in twisted bilayer graphene
- DOI:10.1103/physrevresearch.2.043151
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:C. De Beule;P. Silvestrov;Ming-Hao Liu;P. Recher
- 通讯作者:C. De Beule;P. Silvestrov;Ming-Hao Liu;P. Recher
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Piet W. Brouwer其他文献
Professor Dr. Piet W. Brouwer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Piet W. Brouwer', 18)}}的其他基金
Topological insulators with weak and strong indices
具有弱指数和强指数的拓扑绝缘体
- 批准号:
314807712 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Quantum Transport in Graphene near the Dirac Point
狄拉克点附近石墨烯的量子传输
- 批准号:
171275106 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Understanding Pulsatile Helical Flow: Scaling, Turbulence, and Helicity Control
了解脉动螺旋流:缩放、湍流和螺旋度控制
- 批准号:
2342517 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Development of Universal Chiral Visualization Technique Using Helical Polymers and Challenge to Hidden Chirality
使用螺旋聚合物的通用手性可视化技术的发展和对隐藏手性的挑战
- 批准号:
23K13791 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing helical peptide antagonists of the growth hormone receptor
开发生长激素受体的螺旋肽拮抗剂
- 批准号:
10648820 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Broadband and tunable enhanced chiral light-matter interactions at the visible with new ultrathin helical metamaterials
新型超薄螺旋超材料在可见光下实现宽带和可调谐增强手性光与物质相互作用
- 批准号:
2224456 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Securing Australian floating wind developments with helical anchors
使用螺旋锚确保澳大利亚浮动风电开发项目的安全
- 批准号:
LP220100384 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Projects
Biogenesis of alpha-helical mitochondrial outer membrane proteins in higher eukaryotes
高等真核生物中α螺旋线粒体外膜蛋白的生物发生
- 批准号:
10723598 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigation on Chiral Molecular Wire Properties Based on pi-Extended Helical Molecules
基于π延伸螺旋分子的手性分子线性质研究
- 批准号:
23H01949 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Revolutionising UK Satellite Telecoms: A Printable Approach to Helical Antennas in Orbit
彻底改变英国卫星电信:在轨螺旋天线的可打印方法
- 批准号:
10075375 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Nanometrical Helical Gold for multi-scale chiral recognition
用于多尺度手性识别的纳米螺旋金
- 批准号:
23H01782 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hybrid optical vortices pioneers advanced helical materials
混合光学涡旋开创了先进螺旋材料
- 批准号:
23H00270 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)