機械学習による医薬候補化合物の構造最適化
使用机器学习对候选药物化合物进行结构优化
基本信息
- 批准号:22KJ2290
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-03-08 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
本研究は創薬初期段階において医薬候補化合物の活性や物性を最適化するプロセスのための構造展開を効率化する手法の提案を目的としている。このために類似する構造を有する化合物間に軽微な構造の変化が生じた際に、その生物学的活性が 劇的に変化するactivity cliff(AC)という現象に着目している。解釈可能なAC予測機械学習モデルを構築することで既知の化合物群から派生した構造を有しながら、より高い活性を有する医薬候補化合物の提案を目指す。2022年度は当初の計画であるメタ学習を採用した複数の標的マクロ分子に対する活性情報を学習に用いた深層学習モデル構築のための事前検討として、単一の標的マクロ分子に対する情報のみを使用した予測モデルを構築し、従来の手法との比較を行った。既存研究で報告がある予測モデルは、その検証に用いられている標的マクロ分子の種類が限定的であるため、標的マクロ分子の種類によらず予測能の高いモデルの構築を目指した。種々の入力化合物の表現手法および学習器により9種類の予測モデルを、100種類の標的マクロ分子に対し構築することで大規模な予測精度の比較を行った。その結果、深層学習を用いた手法では従来手法にわずかに劣る精度が示され、またその精度は学習データの正例と負例の比や、学習データと検証データの類似性に大きく影響を受けることが示された。この研究結果はJournal of Cheminformatics誌に掲載された。
In the early stage of this study, we studied the activity of medical candidate compounds in the early stage of this study. the purpose of the proposal is to optimize the physical properties. The chemical activity cliff (AC) assay is similar to the creation of chemical compounds that contain chemical compounds, such as chemical compounds, bioactive compounds and bioactive compounds. It is possible to AC that the chemical compounds are known to be derived from the chemical group, and that they are highly active and have been proposed for medical candidate compounds. In the year 2022, in the first part of the year, we used the complex number of molecules to learn the activity of the molecules, and to use the techniques to compare the behavior of the patients. The existing research reports are used to determine the limits of the current research report, the current research report and the current research report. A variety of chemical compounds are used to show that the accuracy of the chemical instrument is higher than that of the molecular weight of the whole system. The results show that the accuracy is poor, the accuracy is poor, the accuracy is correct, the similarity is high, and the similarity is significant. The results of the Journal of Cheminformatics study showed that there were significant differences in the results of the study.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
田村 峻佑其他文献
田村 峻佑的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
肝臓内酸素動態を含む透析低血圧発症予知モデルの構築:統計・機械学習分析による解析
构建预测透析低血压发作(包括肝内氧动态)的模型:使用统计和机器学习分析进行分析
- 批准号:
24K15796 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
臨床情報による高精度分娩進行予測モデルの開発: 機械学習の活用
利用临床信息开发高精度的分娩进展预测模型:利用机器学习
- 批准号:
24K13948 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
新興感染症のシステマティック・レビューを機械学習を用いて簡易に実施するための研究
利用机器学习轻松对新发传染病进行系统评价的研究
- 批准号:
24K13518 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
独立成分分析を活用した信頼性の高い機械学習手法の構築
使用独立成分分析构建可靠的机器学习方法
- 批准号:
24K15093 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
学習過程情報に基づき理由を説明可能な高速論理型機械学習器の開発の提案
开发可根据学习过程信息解释原因的高速逻辑机器学习装置的提案
- 批准号:
24K15095 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
多次元イベント時間データ解析の推測理論と方法・機械学習の開発
多维事件时间数据分析的推理理论和方法/机器学习的发展
- 批准号:
24K14853 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
速度ポテンシャルエネルギー整形法と機械学習を用いた宇宙機制御理論の開発
利用速度势能整形方法和机器学习发展航天器控制理论
- 批准号:
23K20946 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ユビキタス機械学習社会におけるプライバシ保護基盤
无处不在的机器学习社会中的隐私保护基础设施
- 批准号:
23K21695 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
正則化機能強化による超ロバスト推定法の開拓と一般化:信号処理・機械学習への応用
通过加强正则化功能开发和推广超鲁棒估计方法:在信号处理和机器学习中的应用
- 批准号:
23K22762 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
攻撃に耐性を持つ機械学習モデルによる設計工程ハードウェアトロイ検知
使用抗攻击的机器学习模型在设计过程中检测硬件木马
- 批准号:
23K24816 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)