Proof Mining in Convex Optimization and related areas

凸优化及相关领域的证明挖掘

基本信息

项目摘要

In this Project we aim at using proof-theoretic methods from logic for the extraction of new data (such as effective bounds, "proof mining") from prima facie noneffective proofs in convex optimization and related areas.In the course of this logic-based methodology, suitable forms of so-called proof interpretations have been developed by the applicant during the past decades and successfully applied in nonlinear analysis. In the previous 3 years of funding we applied this at large scale to problems in the area of convex optimization and - additionally - also carried out new case studies in neighbouring areas such as ergodic theory, approximation theory and Tauberian theory.During the next 3 years we will extend this approach to further problems in convex optimization including those which have a connection to current work in the area of machine learning. Here we will focus on proofs which make use of generalizations of the concept of "monotonicity" for set-valued operators which have recently been studied in convex optimization and are used in the context of machine learning. We also intend to analyze proofs which study abstract Cauchy problems given by accretive operators.The main goal of this project is the extraction of rates of asymptotic regularity, metastability (in the sense of T. Tao) and convergence of central iterative procedures whose convergence is shown using such generalized monotonicity or accretivity properties of set-valued operators but also the generalization of such results from the setting of Hilbert spaces to metric structures, such as CAT(0)-spaces, and more general Banach spaces.
在这个项目中,我们的目标是使用逻辑证明理论方法从凸优化和相关领域的表面无效证明中提取新数据(例如有效范围,“证明挖掘”)。在这种基于逻辑的方法的过程中,申请人在过去几十年中开发了所谓的证明解释的合适形式,并成功应用于非线性分析。在过去 3 年的资助中,我们大规模地将这种方法应用于凸优化领域的问题,此外,还在遍历理论、逼近理论和陶伯理论等邻近领域进行了新的案例研究。在接下来的 3 年中,我们将把这种方法扩展到凸优化中的其他问题,包括那些与机器学习领域当前工作相关的问题。在这里,我们将重点关注利用集值算子的“单调性”概念的推广的证明,这些算子最近在凸优化中进行了研究,并在机器学习的背景下使用。我们还打算分析研究由累加算子给出的抽象柯西问题的证明。该项目的主要目标是提取渐近正则性、亚稳态(在 T.Tao 意义上)的速率和中心迭代过程的收敛性,其收敛性使用集值算子的广义单调性或累加性属性来显示,而且还将这些结果从希尔伯特空间的设置推广到度量 结构,例如 CAT(0) 空间,以及更一般的 Banach 空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Ulrich Kohlenbach其他文献

Professor Dr. Ulrich Kohlenbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Ulrich Kohlenbach', 18)}}的其他基金

Extraction of effective uniform bounds from proofs based on sequential compactness via logical analysis
通过逻辑分析从基于顺序紧致性的证明中提取有效的统一边界
  • 批准号:
    108728300
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
  • 批准号:
    21242003
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
  • 批准号:
    24K16438
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ART: Mining the Rich Vein of Research in Montana
艺术:挖掘蒙大拿州研究的丰富脉络
  • 批准号:
    2331325
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
  • 批准号:
    24K17540
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
DISES Investigating mercury biogeochemical cycling via mixed-methods in complex artisanal gold mining landscapes and implications for community health
DISES 通过混合方法研究复杂手工金矿景观中的汞生物地球化学循环及其对社区健康的影响
  • 批准号:
    2307870
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Generating green hydrogen from mining wastes
从采矿废物中产生绿色氢气
  • 批准号:
    IM240100202
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Mid-Career Industry Fellowships
Novel Hydrophobic Concrete for Durable and Resilient Mining Infrastructure
用于耐用且有弹性的采矿基础设施的新型疏水混凝土
  • 批准号:
    LP230100288
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
SBIR Phase I: Electromagnetic-ablative PGM Refining for In-situ Asteroid Mining
SBIR 第一阶段:用于小行星原位采矿的电磁烧蚀铂族金属精炼
  • 批准号:
    2327078
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Temporal Graph Mining for Anomaly Detection
用于异常检测的时间图挖掘
  • 批准号:
    DP240101547
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了