Self-Powered, Hybrid Triboelectric-Piezoresistive Tactile Sensor array-based Artificial Skin for Soft Robots
用于软体机器人的基于自供电、混合摩擦电压阻式触觉传感器阵列的人造皮肤
基本信息
- 批准号:404941515
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The first round of the SPP2100 proposal entitled, “Ultrasoft Long-Range Strain and Self-Powered Touch sensors for Soft Robotic Segments” was focused on developing multifunctional crosslinked rubber-based inexpensive solutions for piezoresistive and triboelectric tactile sensing prototypes and subsequent integration into soft robotic components. In the second phase, we aim to move further ahead with the results extracted from the first phase. The ultrasensitive triboelectric tactile sensor is shown to perceive of a mild touch and this can be further manipulated by additional topographical functionalization. We propose to develop and design functional, commercial rubber substrates by incorporating chemical engineering on the surface, additive manufacturing methods, self-healable properties and transfer-printing of the elastomer for highly sensitive triboelectric and piezoresistive sensing solutions. For the soft robotic applications, piezoresistive sensors with high repeatability and reproducibility are particularly considered. Herein, for the first time, we propose to achieve desired performance with excellent sensitivity by incorporating vacuum-metal layer deposited stretchable interconnector-based strain sensors. Furthermore, instead of single sensor, we aim to fabricate hybrid tactile sensing array-based artificial skins that are ultrastretchable, durable and multi-stimuli responsive with high spatiotemporal resolution. The proposed skin-mimicking tactile module can offer high reproducibility with larger surface coverage on soft robots and record complex tactile information by producing varied electrical voltage signal as a function of vibration, touch or force. Furthermore, the embedded e-skin can also exhibit self-powered characteristic as triboelectric tactile module is expected to produce output current (in microamps) upon contact friction that would be sufficient for running small intensity sensors and arrays. In addition, our objective will also be to integrate self-healing functionality to rubber-based touch and force sensors for long term, all-weather operability and longevity. Finally, current proposal will strongly encourage cumulative development and multilateral research outcome in terms of complex data processing that will be analyzed by collaborative developments of neural network-based machine learning algorithms and computational modelling studies offered by fellow SPP2100 co-contributors. The present proposal involving the development of artificial skin for soft robotic components and signal processing by computational methods, therefore, emphasize particularly on strong collaborative outcomes within the SPP2100 framework in terms of interdisciplinary overlap between e-skin, soft robotics and machine learning.
SPP 2100的第一轮提案名为“用于软机器人细分市场的超软远程应变和自供电触摸传感器”,重点是开发多功能交联橡胶基廉价解决方案,用于压阻和摩擦电触觉传感原型,并随后集成到软机器人组件中。在第二阶段,我们的目标是进一步推进从第一阶段提取的结果。超灵敏的摩擦电触觉传感器被示出为感知温和的触摸,并且这可以通过附加的地形功能化来进一步操纵。我们建议开发和设计功能性的商业橡胶基材,将化学工程结合在表面上,增材制造方法,弹性体的自修复特性和转印,用于高灵敏度的摩擦电和压阻传感解决方案。对于软机器人应用,特别考虑具有高重复性和再现性的压阻传感器。在此,我们第一次提出通过将真空金属层沉积的基于可拉伸互连器的应变传感器结合在一起来实现具有优异灵敏度的期望性能。此外,而不是单一的传感器,我们的目标是制造混合触觉传感阵列为基础的人工皮肤,是超拉伸,耐用和多刺激响应与高时空分辨率。所提出的仿皮肤触觉模块可以提供高再现性,在软机器人上具有更大的表面覆盖率,并通过产生作为振动、触摸或力的函数的变化的电压信号来记录复杂的触觉信息。此外,嵌入式电子皮肤还可以表现出自供电特性,因为预期摩擦电触觉模块在接触摩擦时产生足以运行小强度传感器和阵列的输出电流(以微安为单位)。此外,我们的目标还包括将自愈功能集成到基于橡胶的触摸和力传感器中,以实现长期、全天候的可操作性和寿命。最后,目前的提案将大力鼓励在复杂数据处理方面的累积开发和多边研究成果,这些成果将通过SPP 2100共同贡献者提供的基于神经网络的机器学习算法和计算建模研究的合作开发进行分析。因此,本提案涉及为软机器人组件开发人工皮肤和通过计算方法进行信号处理,特别强调在电子皮肤,软机器人和机器学习之间的跨学科重叠方面,SPP 2100框架内的强大合作成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Amit Das其他文献
Dr. Amit Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
I-Corps: Blockchain-powered hybrid platform for seamless and interoperable medical image sharing
I-Corps:区块链驱动的混合平台,用于无缝和可互操作的医疗图像共享
- 批准号:
2335417 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Hybrid Energy Powered Smart Irrigation System for Smallholder Farmers
适用于小农的混合能源智能灌溉系统
- 批准号:
10039507 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Feasibility Studies
Hybrid 1D/2D Nanostructures for Solar-Powered Water Splitting
用于太阳能水分解的混合一维/二维纳米结构
- 批准号:
567645-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Development and Implementation of Stability and Control Constraints for Unconventional Solar-Powered Hybrid Airship Shape Optimization
非常规太阳能混合飞艇形状优化的稳定性和控制约束的开发和实施
- 批准号:
575875-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
- 批准号:
555763-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Building hybrid devices powered by cell-free synthetic biology
构建由无细胞合成生物学驱动的混合设备
- 批准号:
RGPIN-2016-06352 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
- 批准号:
555763-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Building hybrid devices powered by cell-free synthetic biology
构建由无细胞合成生物学驱动的混合设备
- 批准号:
RGPIN-2016-06352 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
- 批准号:
555763-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Building hybrid devices powered by cell-free synthetic biology
构建由无细胞合成生物学驱动的混合设备
- 批准号:
RGPIN-2016-06352 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual