Estimation of human motion intentions using high density EMG signals

使用高密度肌电信号估计人体运动意图

基本信息

  • 批准号:
    21K18105
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

One of the major challenge in HDEMG research is the electrode shift during muscle movement and between different experimental sessions. To address this we have being considering different techniques that can give enough information of variation of the muscle activity irrespective of the electrode's exact location. Thus, we have understood the spatial variation of the HDEMG signals can provide enough information to differentiate finger motions that have similar muscle activity pattern measure with SEMG signals. In the process we measured, HDEMG signals for 6 different types of finger motions. Then activations maps of the HDEMG signals were generated using the root mean square (EMS) values of the preprocessed HDEMG data. Gabor features were used extract spatial variations of the heat maps and error correcting output codes based multi class support vector machine classifier was used to classify 6 different finger motions with an average accuracy of 95.8%, in an offline study. The Gabor features were successful in extracting information related to the muscle activity from the heat maps. Further time series data of RMS values were used to train deep learning network to classify the 6 classes of motion with 85% accuracy.
HDEMG研究中的主要挑战之一是肌肉运动过程中和不同实验阶段之间的电极移位。为了解决这个问题,我们一直在考虑不同的技术,无论电极的确切位置如何,都可以提供足够的肌肉活动变化信息。因此,我们理解了HDEMG信号的空间变化可以提供足够的信息来区分具有与sEMG信号相似的肌肉活动模式的手指运动。在这个过程中,我们测量了6种不同类型手指运动的HDEMG信号。然后利用处理后的HDEMG数据的均方根(EMS)值生成HDEMG信号的激活图。在离线研究中,利用Gabor特征提取热图的空间变异,并使用基于纠错输出编码的多类支持向量机分类器对6种不同的手指运动进行分类,平均正确率为95.8%。Gabor特征成功地从热图中提取了与肌肉活动相关的信息。进一步利用RMS值的时间序列数据训练深度学习网络,对6类运动进行分类,准确率为85%。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Motion Intention Estimation of Finger Motions with Spatial Variations of HD EMG Signals
Prediction of finger motions based on high-density electromyographic signals using two-dimensional convolutional neural networks
使用二维卷积神经网络根据高密度肌电信号预测手指运动
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ayumi Hayashi;Emi Anzai;Naoki Saiwaki;Hidenobu Sumioka;Masahiro Shiomi;安在絵美,川治和奏,才脇直樹;D.S.V Bandara;He Chongzaijiao
  • 通讯作者:
    He Chongzaijiao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANWATTA SANJAYA・VIPULA・BANDARA其他文献

DANWATTA SANJAYA・VIPULA・BANDARA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANWATTA SANJAYA・VIPULA・BANDARA', 18)}}的其他基金

A study on hybrid brain computer interface for neurorehabilitation with EEG signals
脑电信号神经康复混合脑机接口研究
  • 批准号:
    24K21158
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists

相似海外基金

IDBR: Optical Fourier Processing Microscope Based on Two-Dimensional Gabor Filters
IDBR:基于二维 Gabor 滤波器的光学傅立叶处理显微镜
  • 批准号:
    0852857
  • 财政年份:
    2009
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了