Exponential motivic homotopy theory, foliations and applications

指数本征同伦理论、叶状结构及应用

基本信息

项目摘要

This is a proposal submitted to the DFG within the SPP 1786. The project described here consists of two related topics. The first is the construction and exploration of exponential motivic homotopy theory, a variant of motivic homotopy theory for varieties with potentials. The second is centered around the geometric and homotopical theory of foliations and higher differential Galois theory, and its application to the study of motives and algebraic cycles. Exponential connections and the twisted de Rham complex play a central role in both areas.
这是在SPP 1786中提交给DFG的提案。这里描述的项目包括两个相关的主题。第一个是指数动机同伦理论的构建和探索,动机同伦理论的变种品种的潜力。第二部分围绕叶理的几何和同伦理论和高等微分伽罗瓦理论,及其在动机和代数循环研究中的应用。指数连接和扭曲的德拉姆复杂发挥了核心作用,在这两个领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Simon Pepin Lehalleur其他文献

Dr. Simon Pepin Lehalleur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

环面空间的上同调与motivic稳定同伦
  • 批准号:
    12271183
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
代数群作用下复射影簇的Lawson同调与morphic上同调
  • 批准号:
    12126309
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
代数群作用下复射影簇的Lawson同调与morphic上同调
  • 批准号:
    12126354
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
同伦群的结构与计算
  • 批准号:
    11801082
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Motivic稳定同伦与环面拓扑中R-S谱序列的研究
  • 批准号:
    11871284
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
Wall crossing现象和内禀Higgs态
  • 批准号:
    11305125
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2427220
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Motivic, Operadic, and Combinatorial Homotopy Theory
RUI:动机、操作和组合同伦理论
  • 批准号:
    2204365
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2204357
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Global motivic homotopy theory
全局动机同伦理论
  • 批准号:
    EP/W012030/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Analyzing algebraic varieties from the point of view of motivic homotopy theory
从动机同伦论的角度分析代数簇
  • 批准号:
    2101898
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Motivic Homotopy Theory and Applications to Enumerative Geometry
本征同伦理论及其在枚举几何中的应用
  • 批准号:
    2103838
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Classical, Motivic and Equivariant Stable Homotopy Groups of Spheres.
球面的经典、动机和等变稳定同伦群。
  • 批准号:
    2105462
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Motivic Homotopy Theory, Stable Homotopy Groups of Spheres and the Kervaire Invariant
动机同伦理论、球面稳定同伦群和 Kervaire 不变量
  • 批准号:
    2043485
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Motivic Cohomology, Motivic Homotopy Theory and K-theory
动机上同调、动机同伦理论和 K 理论
  • 批准号:
    2001417
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了