Making Machine Learning on Static and Dynamic 3D Data Practical
使基于静态和动态 3D 数据的机器学习变得实用
基本信息
- 批准号:405799936
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last five years, advances in deep learning have led to significant progress in allowing computers to understand the real world from visual input, thus opening up many opportunities ranging from robotics to virtual and augmented reality, as well as medical and industry 4.0 applications. Most of these machine learning architectures are convolutional neural networks (CNNs), which are able to learn powerful features from images, and even generate highly-realistic pictures from scratch using generative adversarial networks (GANs). In the 2D image domain, we have seen tremendous success in both discriminative and generative tasks.Unfortunately, for 3D data, e.g. data obtained from 3D scans on autonomous cars, research is only at the infancy. This 3D direction requires further exploration, as our world is inherently three-dimensional (e.g. humans see with two eyes), and even four-dimensional when considering the temporal domain. In fact, performing scene understanding in 3D has significant advantages; for instance, a machine learning approach does not need to learn viewpoint invariance, and thus requires less training data. However, the additional third dimension (and fourth for dynamics) comes at significant computational and memory overhead, which has so far been the major bottleneck in these applications.In this proposal, we address this shortcoming by developing efficient machine learning algorithms for 3D and 4D data analysis. In particular, we will develop deep learning architectures and training methods capable of efficiently modeling different types of static and dynamic 3D data representations, including sparse sparse spatial and temporal representations on voxel volumes, RGB-D images, point clouds, multi-view images, and meshes. We will further construct new datasets designed for our scenario, captured from the real-world, as well as synthetically generated with simulated renderings, augmented to reduce the reality gap between artificial and real data. Finally, we will develop new neural network architectures designed for discriminative and generative applications embedded in spatial and specifically temporal domains. In order to showcase our learning methods, we will apply them to static and dynamic 3D reconstruction tasks, as well as semantic scene understanding in 3D and 4D with an emphasis on fusing the spatial and temporal domains.
在过去的五年里,深度学习的进步在允许计算机从视觉输入理解真实的世界方面取得了重大进展,从而开辟了从机器人到虚拟和增强现实以及医疗和工业4.0应用的许多机会。大多数机器学习架构都是卷积神经网络(CNN),它们能够从图像中学习强大的特征,甚至使用生成对抗网络(GAN)从头开始生成高度真实的图片。在2D图像领域,我们已经在判别和生成任务方面取得了巨大的成功。不幸的是,对于3D数据,例如从自动汽车上的3D扫描获得的数据,研究还处于起步阶段。这个3D方向需要进一步探索,因为我们的世界本质上是三维的(例如人类用两只眼睛看),甚至在考虑时间域时是四维的。事实上,在3D中执行场景理解具有显着的优势;例如,机器学习方法不需要学习视角不变性,因此需要更少的训练数据。然而,额外的第三个维度(和第四个动力学)来在显着的计算和内存开销,这一直是迄今为止在这些应用中的主要瓶颈。在这个建议中,我们通过开发高效的机器学习算法来解决这个缺点3D和4D数据分析。特别是,我们将开发能够有效建模不同类型的静态和动态3D数据表示的深度学习架构和训练方法,包括体素体积,RGB-D图像,点云,多视图图像和网格的稀疏空间和时间表示。我们将进一步构建为我们的场景设计的新数据集,从现实世界中捕获,以及用模拟渲染合成生成,增强以减少人工和真实的数据之间的现实差距。最后,我们将开发新的神经网络架构,用于嵌入空间和特定时间域的判别和生成应用。为了展示我们的学习方法,我们将把它们应用于静态和动态3D重建任务,以及3D和4D中的语义场景理解,重点是融合空间和时间域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Matthias Nießner其他文献
Professor Dr.-Ing. Matthias Nießner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Matthias Nießner', 18)}}的其他基金
Domain Transfer with Generative Models and Neural Rendering
使用生成模型和神经渲染进行域转移
- 批准号:
453990920 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Sequential Decision Making with Imperfect Information: Machine Learning and Information Theory
不完美信息的顺序决策:机器学习和信息论
- 批准号:
23K17547 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Modelling, predicting and risk assessment of mpox (monkeypox) and other (re)emerging zoonotic threats to inform decision-making and public health actions: mathematical, geospatial and machine learning approaches
对mpox(猴痘)和其他(重新)出现的人畜共患威胁进行建模、预测和风险评估,为决策和公共卫生行动提供信息:数学、地理空间和机器学习方法
- 批准号:
481139 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Human-machine learning of ambiguities to support safe, effective, and legal decision making
人机学习歧义以支持安全、有效、合法的决策
- 批准号:
EP/X030156/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Extending the explainability of machine learning models in policy decision making
扩展机器学习模型在政策决策中的可解释性
- 批准号:
2887425 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Making Visualization Scalable (MAVIS) for explaining machine learning classification models
使可视化可扩展(MAVIS)用于解释机器学习分类模型
- 批准号:
EP/X029689/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Making cities safer and cleaner using micro-mobility and machine learning
利用微移动和机器学习让城市更安全、更清洁
- 批准号:
10043705 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Machine learning algorithms for automated decision making under domain shift
领域转移下自动决策的机器学习算法
- 批准号:
2736505 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Automated decision making via optimization and machine learning
通过优化和机器学习自动决策
- 批准号:
RGPIN-2020-04082 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Machine Learning In Medicine: Evaluating Critical Barriers to Effective and Equitable Implementation Within Clinical Decision Making
医学中的机器学习:评估临床决策中有效和公平实施的关键障碍
- 批准号:
475628 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship Programs
Collaborative Machine Learning: using information from multiple mineral deposits to improve decision making
协作机器学习:利用多个矿藏的信息来改进决策
- 批准号:
577571-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants