Object recognition, localization and private object interaction tracking for maintenance-free IoT
对象识别、定位和私有对象交互跟踪,实现免维护物联网
基本信息
- 批准号:22K17883
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2022
- 资助国家:日本
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Object recognition: We prepared and submitted a full paper to the IEEE IoT Journal. We developed RadioRec, a deep learning-based system that recognizes everyday objects based on their interactions with microwave signals in a contact-less manner. RadioRec is a significant upgrade compared to our earlier workshop paper, both in terms of the learning capabilities and in terms of evaluation. RadioRec works by transmitting a microwave signal through the object using a single antenna pair. RadioRec extracts features automatically using an autoencoder, and uses them to train an object classification model. Our evaluation shows that RadioRec can detect and recognize 26 everyday objects of various materials and shapes with an accuracy of over 97%.The paper was rejected. The reviewers requested additional evaluation in a different environment, and also several clarifications in the text. We are now working on addressing the reviewers’ comments and preparing an updated submission to the same journal, as suggested by the reviewers. So far, we have performed additional experiments in another environment, with various object orientations and object positions, and have obtained promising preliminary results.Object localization: We have prepared a preliminary implementation of SpotFi (DOI: 10.1145/2785956.2787487) for the USRP software-defined radio platform to enable the simultaneous estimation of angle of arrival and time of flight on backscatter tags. We are currently working on getting the estimation to work correctly in a controlled environment (for now, without backscatter tags).
目标识别:我们准备并提交了一篇完整的论文给IEEE IoT Journal。我们开发了RadioRec,这是一个基于深度学习的系统,可以通过非接触方式识别日常物品与微波信号的相互作用。与我们之前的研讨会论文相比,RadioRec是一个重大的升级,无论是在学习能力方面还是在评估方面。RadioRec的工作原理是使用一对天线对将微波信号通过物体传输。RadioRec使用自动编码器自动提取特征,并使用它们来训练对象分类模型。我们的评估表明,RadioRec可以检测和识别26种不同材料和形状的日常物体,准确率超过97%。论文被退稿了。审稿人要求在不同的环境下进行进一步评价,并要求在案文中作出若干澄清。根据审稿人的建议,我们现在正在处理审稿人的意见,并准备向同一期刊提交更新的投稿。到目前为止,我们已经在另一个环境中进行了额外的实验,使用了不同的物体方向和物体位置,并获得了很好的初步结果。目标定位:我们已经为USRP软件定义无线电平台准备了SpotFi (DOI: 10.1145/2785956.2787487)的初步实现,以便同时估计反向散射标签的到达角度和飞行时间。我们目前正在努力使估计在受控环境中正确工作(目前,没有反向散射标签)。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Activity Recognition Using Wi-Fi CSI from Backscatter Tags [WIP paper and poster]
使用 Backscatter 标签中的 Wi-Fi CSI 进行活动识别 [WIP 论文和海报]
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Presenter: Kazuki Miyao. Authors: Viktor Erdelyi;Kazuki Miyao;Akira Uchiyama;Tomoki Murakami.
- 通讯作者:Tomoki Murakami.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
エルデーイ ヴィクトル其他文献
Wi-Fiイメージングによる行動認識の検討
基于Wi-Fi成像的行为识别研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
大河原一輝;内山 彰;エルデーイ ヴィクトル;村上友規;アベセカラ ヒランタ;東野輝夫 - 通讯作者:
東野輝夫
エルデーイ ヴィクトル的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313234 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313233 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Wireless sensing for rolling stock condition monitoring
用于机车车辆状态监测的无线传感
- 批准号:
10089349 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Collaborative R&D
Integrated Multi-Beam Sub-Millimeter Wave System on chip/in-package for Emerging Wireless/Sensing Applications
适用于新兴无线/传感应用的片上/封装内集成多波束亚毫米波系统
- 批准号:
DGECR-2022-00095 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Launch Supplement
Integrated Multi-Beam Sub-Millimeter Wave System on chip/in-package for Emerging Wireless/Sensing Applications
适用于新兴无线/传感应用的片上/封装内集成多波束亚毫米波系统
- 批准号:
RGPIN-2022-03952 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
- 批准号:
555763-2020 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
CAREER: Wide Area Wireless Sensing: Theories and Applications
职业:广域无线传感:理论与应用
- 批准号:
2144668 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
- 批准号:
555763-2020 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Research on hunter assistance system using wireless sensing and machine learning
基于无线传感和机器学习的猎人辅助系统研究
- 批准号:
20K19780 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
- 批准号:
555763-2020 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years