Adversarial robustness meets imperfect training set
对抗鲁棒性满足不完善的训练集
基本信息
- 批准号:22K17955
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2022
- 资助国家:日本
- 起止时间:2022-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The AI algorithms can be adversarially fooled, which urgently requires developing adversarially robust learning algorithms in safety-critical applications. On the other hand, learning AI algorithms generally requires massive and high-quality data, which is costly and sometimes unrealistic; thus, an imperfect (e.g., noisy-label or poisoned) data unavoidably co-exists in the learning phase.In FY2022, we have developed adversarially robust learning algorithms with the support of the JSPS KAKENHI Grant, which can handle imperfect training sets, including noisy labels [1] and complementary labels [2]. Additionally, we have utilized a collaborative scheme with multiple models to further improve adversarial robustness [3]. Our research findings have been published in high-profile machine learning conferences and journals.[1] NoiLin: Improving Adversarial Training and Correcting Stereotype of Noisy Labels. J. Zhang*, X. Xu, B. Han, T. Liu, N. Gang, L. Cui, M. Sugiyama. Transactions on Machine Learning Research (TMLR 2022)[2] Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks. J. Zhou, J. Zhou, J. Zhang*, T. Liu, G. Niu, B. Han, M. Sugiyama. 36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022)[3] Synergy-of-Experts: Collaborate to Improve Adversarial Robustness. S. Cui, J. Zhang*, J. Liang, B. Han, M. Sugiyama, C. Zhang. 36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022)
人工智能算法可能会被恶意愚弄,这迫切需要在安全关键应用中开发恶意健壮的学习算法。另一方面,学习人工智能算法通常需要大量高质量的数据,这是昂贵的,有时甚至是不现实的,因此在学习阶段不可避免地存在不完美的(例如,噪声标签或有毒的)数据。在2022财年,我们在JSPS KAKENHI Grant的支持下开发了相对健壮的学习算法,它可以处理不完美的训练集,包括噪声标签[1]和互补标签[2]。此外,我们还利用了具有多个模型的协作方案来进一步提高对手攻击的健壮性[3]。我们的研究成果已经发表在备受瞩目的机器学习会议和期刊上。[1]NoiLin:改进对抗性训练,纠正对嘈杂标签的刻板印象。首页--期刊主要分类--期刊细介绍,期刊题录与文摘--期刊详细文摘内容机器学习研究汇刊(TMLR 2022)[2]具有补充标签的对抗性训练:关于逐渐提供信息的攻击的好处。周军,周军,张军*,刘涛,牛刚,韩斌,杉山。第36届神经信息处理系统年会(NeurIPS 2022)[3]专家协作:合作提高对手的稳健性。崔世安,张军*,梁军,韩斌,杉山,张振中。第36届神经信息处理系统年会(NeurIPS 2022)
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bilateral Dependency Optimization: Defending Against Model-inversion Attacks
- DOI:10.1145/3534678.3539376
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Xiong Peng;Feng Liu;Jingfeng Zhang;Long Lan;Junjie Ye-;Tongliang Liu;Bo Han
- 通讯作者:Xiong Peng;Feng Liu;Jingfeng Zhang;Long Lan;Junjie Ye-;Tongliang Liu;Bo Han
Synergy-of-Experts: Collaborate to Improve Adversarial Robustness
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sen Cui;Jingfeng Zhang;Jian Liang;Bo Han;Masashi Sugiyama;Changshui Zhang
- 通讯作者:Sen Cui;Jingfeng Zhang;Jian Liang;Bo Han;Masashi Sugiyama;Changshui Zhang
NoiLin: Improving adversarial training and correcting stereotype of noisy labels
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Jingfeng Zhang;Xilie Xu;Bo Han;Tongliang Liu;Gang Niu;Li-zhen Cui;Masashi Sugiyama
- 通讯作者:Jingfeng Zhang;Xilie Xu;Bo Han;Tongliang Liu;Gang Niu;Li-zhen Cui;Masashi Sugiyama
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang Jingfeng其他文献
Plasma simulation and optimization for a miniaturized antenna ECR ion source
小型化天线ECR离子源的等离子体模拟与优化
- DOI:
10.1016/j.nima.2021.165586 - 发表时间:
2021-09 - 期刊:
- 影响因子:0
- 作者:
Peng Shixiang;Zhang Ailin;Wu Wenbin;Ma Tenghao;Jiang Yaoxiang;Li Kai;Zhang Jingfeng;Zhang Tao;Wen Jiamei;Xu Yuan;Guo Zhiyu;Chen Jiaer - 通讯作者:
Chen Jiaer
Hoya tetrantha (Apocynaceae, Asclepiadoideae), A New Species from Yunnan, China
中国云南一新种Tetrantha(夹竹桃科、萝藦科)
- DOI:
10.11926/jtsb.4289 - 发表时间:
2021-03 - 期刊:
- 影响因子:0
- 作者:
Zhang Jingfeng;Tong Yihua;Xia Nianhe - 通讯作者:
Xia Nianhe
Analysis of bridge response to barge collision: Refined impact force models and some new insights
桥梁对驳船碰撞的响应分析:完善的冲击力模型和一些新见解
- DOI:
10.1177/1369433216634533 - 发表时间:
2016 - 期刊:
- 影响因子:2.6
- 作者:
Zhang Jingfeng;Chen Xinzhong;Liu Dejun;Li Xiaozhen - 通讯作者:
Li Xiaozhen
Extranodal imaging manifestations of Non-Hodgkin’s lymphoma
- DOI:
10.1007/bf02829528 - 发表时间:
2003-09-01 - 期刊:
- 影响因子:1.500
- 作者:
Zhang Jingfeng;Wang Renfa;Li Yonggang;Zhang Fang - 通讯作者:
Zhang Fang
Experimental and Numerical Investigation on the Ultimate Vertical Bearing Capacity of U-Shaped Girder with Damaged Web
腹板损伤U型梁极限竖向承载力试验及数值研究
- DOI:
10.3390/s19173735 - 发表时间:
2019-08 - 期刊:
- 影响因子:3.9
- 作者:
Zhang Jingfeng;Jing Yuan;Li P;ao;Han Wanshui;Zhang Nan;Zhou Yunlai - 通讯作者:
Zhou Yunlai
Zhang Jingfeng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Learning Software Security Analysers with Imperfect Data
用不完美的数据学习软件安全分析器
- 批准号:
FT220100391 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
ARC Future Fellowships
Automatic Machine Learning with Imperfect Data for Video Analysis
用于视频分析的不完美数据的自动机器学习
- 批准号:
DP200100938 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Discovery Projects
Low Latency Anomaly Detections with Imperfect Data Models
不完美数据模型的低延迟异常检测
- 批准号:
1711087 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Imperfect data: accuracy, impacts and extraction of meaningful information
不完美数据:准确性、影响和有意义信息的提取
- 批准号:
EP/J020230/1 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Research Grant
SEI: Diagnosis and Treatment of HIV Patients using Data-Mining Techniques: Making Inferences from Imperfect Data
SEI:使用数据挖掘技术诊断和治疗艾滋病毒患者:从不完美的数据中进行推断
- 批准号:
0513702 - 财政年份:2005
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Estimation of Demographic Indices From Imperfect Data
从不完美数据估计人口指数
- 批准号:
7813777 - 财政年份:1979
- 资助金额:
$ 3万 - 项目类别:
Standard Grant