Non-equilibrium classical, quantum and active fluids

非平衡经典流体、量子流体和活性流体

基本信息

项目摘要

Non-equilibrium systems come in a much larger variety than in equilibrium and their statistical description and classification remains a major task. The NEQfluids project aims to provide a unified view of systems that can be described as non-equilibrium fluids, using the framework of the functional non-perturbative renormalization group. These systems range from incompressible classical fluids, compressible classical and quantum fluids, to dark matter and active matter. NEQfluids will concentrate expertise and effort across traditional discipline boundaries to reach a better understanding from first principles of these non-equilibrium fluids. We will specifically address four challenges:Fully developed classical turbulence: the aim is to obtain a quantitative understanding of the statistical properties of classical turbulence for incompressible fluids described by the Navier-Stokes equations.Active matter: we want to understand common features at the collective scale of the collective motion of self-propelled living or artificial systems such as flocks of birds, bacteria colonies, or bio-polymers, focusing on two specific cases, polar-ordered flocks and active smectics.Fluid properties of quantum fields: we will compute ab initio the macroscopic properties of fluids for which a microscopic description as a relativistic (or non-relativistic) quantum field theory is known.Macroscopic properties of dark matter and cosmological large-scale structures: our goal is to develop a detailed renormalization group theory of cosmological structure formation.These different problems will be treated by a unified approach based on the functional renormalization group (fRG), which is a modern formulation of Wilson’s original ideas. The fRG is based on an exact flow equation, whose simple form permits approximations that are not based on a series expansion in a “small” parameter, but rather rely on a truncated functional space. This non-perturbative method has been shown to yield accurate results even when the theory is strongly coupled. It is versatile and can be used for classical and quantum systems, in or out of thermal equilibrium, for any field content and in any dimension. The main asset of the NEQfluids consortium is its expertise on these versions of this powerful theoretical tool.Close collaboration between the different tasks and partners is an essential aspect for the completion of this project. Interactions between partners will be facilitated by the many deep connections and parallels at a theoretical level between the systems studied. They are all non-equilibrium in nature, and described in a common theoretical framework (classical Martin-Siggia-Rose-Janssen-de Dominicis response field formalism, or quantum field theoretic Schwinger-Keldysh technique). Moreover, the systems share similar symmetries. Fruitful cross-fertilization between domains will help for substantial advances in the understanding of these different physics problems.
非平衡系统的种类比平衡系统的种类多得多,它们的统计描述和分类仍然是一项主要任务。NEQfluids项目的目的是提供一个统一的系统,可以被描述为非平衡流体,使用功能非微扰重整化群的框架。这些系统的范围从不可压缩的经典流体,可压缩的经典和量子流体,暗物质和活性物质。NEQfluids将集中专业知识和努力跨越传统学科的界限,以更好地理解这些非平衡流体的基本原理。我们将具体解决四个挑战:充分发展的经典湍流:目的是获得对Navier-Stokes方程描述的不可压缩流体的经典湍流的统计特性的定量理解。活性物质:我们想了解自我推进的生命或人工系统(如鸟群、细菌菌落或生物聚合物)的集体运动的集体尺度上的共同特征,量子场的流体性质:我们将从头计算流体的宏观性质,其中微观描述为相对论性的。(或非相对论)量子场论是已知的。暗物质的宏观性质和宇宙学大尺度结构:我们的目标是发展一个详细的宇宙结构形成的重整化群理论。2这些不同的问题将通过一个统一的方法来处理,该方法基于泛函重整化群(fRG),这是威尔逊最初思想的现代表述。fRG是基于一个精确的流量方程,其简单的形式允许近似,而不是基于一个系列的扩展在一个“小”参数,而是依赖于截断的功能空间。这种非微扰方法已被证明,即使在强耦合的理论,产生准确的结果。它是通用的,可以用于经典和量子系统,在或热平衡,任何领域的内容和在任何维度。NEQfluids联盟的主要资产是其在这些版本的强大理论工具方面的专业知识。不同任务和合作伙伴之间的密切合作是完成该项目的重要方面。合作伙伴之间的互动将促进许多深刻的联系和平行的理论水平之间的系统研究。它们在本质上都是非平衡的,并且在一个共同的理论框架中描述(经典的Martin-Siggia-Rose-Janssen-de Dominant响应场形式主义,或量子场论的Schwinger-Keldysh技术)。此外,这些系统具有相似的对称性。各领域之间卓有成效的交流将有助于对这些不同物理问题的理解取得实质性进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jürgen Berges其他文献

Professor Dr. Jürgen Berges的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jürgen Berges', 18)}}的其他基金

The overpopulated Quark Gluon Plasma on the Lattice
晶格上人口过多的夸克胶子等离子体
  • 批准号:
    233033195
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

最优证券设计及完善中国资本市场的路径选择
  • 批准号:
    70873012
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

The role of redox balance in cyanide toxicity and mitochondrial disease
氧化还原平衡在氰化物毒性和线粒体疾病中的作用
  • 批准号:
    10536383
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanistic study of the role of autism spectrum disorder risk genes in hippocampal CA1 population dynamics during learning and memory
自闭症谱系障碍危险基因在学习记忆过程中海马CA1群动态中作用的机制研究
  • 批准号:
    10403938
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Impact of human disease-causing mutation on striatal synaptic and behavioral plasticity
人类致病突变对纹状体突触和行为可塑性的影响
  • 批准号:
    10037918
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Impact of human disease-causing mutation on striatal synaptic and behavioral plasticity
人类致病突变对纹状体突触和行为可塑性的影响
  • 批准号:
    10054595
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Scribble signalosome and active forgetting
涂鸦信号体和主动遗忘
  • 批准号:
    9884818
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Scribble signalosome and active forgetting
涂鸦信号体和主动遗忘
  • 批准号:
    9987220
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Observational fear enhanced plasticity in dmPFC-BLA circuit as a modulator of affective behaviors
观察性恐惧增强了 dmPFC-BLA 回路作为情感行为调节器的可塑性
  • 批准号:
    10400827
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Observational fear enhanced plasticity in dmPFC-BLA circuit as a modulator of affective behaviors
观察性恐惧增强了 dmPFC-BLA 回路作为情感行为调节器的可塑性
  • 批准号:
    10159754
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Observational fear enhanced plasticity in dmPFC-BLA circuit as a modulator of affective behaviors
观察性恐惧增强了 dmPFC-BLA 回路作为情感行为调节器的可塑性
  • 批准号:
    9973171
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Impact of human disease-causing mutation on striatal synaptic and behavioral plasticity
人类致病突变对纹状体突触和行为可塑性的影响
  • 批准号:
    10372071
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了