Basic investigations on the robot-aided magnetic distribution and alignment of microsteel fibers in thin-walled UHPFRC components

机器人辅助薄壁 UHPFRC 部件中微钢纤维磁分布和排列的基础研究

基本信息

项目摘要

The aim of the proposed research project is to explore the basis for the manufacturing process of resource-efficient components by means of the controlled, robot-based magnetic distribution and orientation of steel fibers in UHPFRC (Ultra-High Performance Fibre-Reinforced Concrete). The proposed research project is based on the possibilities offered by digital and robot-supported component manufacturing on the one hand and the potential of fiber alignment to increase the material efficiency of UHPFRC on the other. The method of distributing and orienting steel fibers in UHPFRC is based on the physical phenomenon of magnetism. Since steel fibers are ferromagnetic, magnetic fields can selectively modify their position in fresh concrete. The aim of the research project is to align the position of the steel fibers in the concrete matrix during the production process according to the force flow and the maxim “form follows force”. This defined arrangement of the fibers in a component is intended to significantly increase the effectiveness of the fiber component used and, in addition to improved workability, lead to a considerable reduction in the fibers used, as a result of which a great potential for savings in ecological and economic resources is provided. The reproducible control of the process, which is ensured by the use of the latest developments in the field of robotic production, will be decisive for an economic, building-practical application of the method. The results of the first work packages should, if possible, be integrated into the sub-project of the DFG's Priority Program 1542 "Light Construction with Concrete", which runs until the end of 2017 at the ITE and iBMB. In particular, the method could be used in the production of modularly constructed rod and surface elements (plates) as well as in the highly stressed joint sites (tooth connections) with the aim of achieving a clear increase in performance of these high-performance components. The fiber alignment represents one of several aligned processing steps for the production of a component in a prospective digital manufacturing chain. The practical applications for this method of magnetic fiber alignment are manifold and conceivable for different component groups. Thus, the fiber content in the case of large-area components, e.g. industrial flooring, can be significantly reduced by a defined fiber orientation. Further, the method can be used to increase the tensile strength in locally highly stressed areas, e.g. in the component joining areas or for the gradation of material properties across the structural thickness. In addition, the research project aims at the area-specific replacement of conventional reinforcement, such as the thrust reinforcement in double T-beams or hollow beams made of UHPFRC.
拟议研究项目的目的是通过UHPFRC(超高性能纤维增强混凝土)中钢纤维的受控、基于机器人的磁性分布和取向,探索资源节约型部件制造工艺的基础。拟议的研究项目一方面基于数字化和机器人支持的部件制造提供的可能性,另一方面基于纤维对齐提高UHPFRC材料效率的潜力。超高强钢纤维混凝土中钢纤维的分布和定向方法是基于磁的物理现象。由于钢纤维是铁磁性的,磁场可以选择性地改变它们在新混凝土中的位置。本研究的目的是在生产过程中,根据力流和“形随力”的原则,调整钢纤维在混凝土基体中的位置。纤维在部件中的这种限定的布置旨在显著提高所使用的纤维部件的有效性,并且除了改进的可加工性之外,还导致所使用的纤维的显著减少,其结果是提供了节省生态和经济资源的巨大潜力。通过使用机器人生产领域的最新发展来确保过程的可再现控制,对于该方法的经济,建筑实际应用将是决定性的。如果可能的话,第一个工作包的结果应该被整合到DFG优先计划1542“混凝土轻型建筑”的子项目中,该项目将在ITE和iBMB运行到2017年底。特别地,该方法可用于生产模块化构造的杆和表面元件(板)以及高应力接合部位(齿连接),目的是实现这些高性能部件的性能的明显提高。光纤对齐代表了在未来数字化制造链中生产组件的几个对齐处理步骤之一。这种磁性纤维对齐方法的实际应用是多种多样的,并且可以想象不同的组件组。因此,在大面积组件(例如工业地板)的情况下,纤维含量可以通过限定的纤维取向而显著降低。此外,该方法可用于增加局部高应力区域中的抗拉强度,例如部件连接区域中的抗拉强度或用于跨结构厚度的材料特性的分级。此外,本研究项目的目的是在特定区域更换常规钢筋,如双T梁或UHPFRC空心梁中的推力钢筋。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Harald Kloft其他文献

Professor Dr.-Ing. Harald Kloft的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Harald Kloft', 18)}}的其他基金

Innovative Non-Waste-Wax-Formwork for the Fabrication of High-Precision Machine Frames made of UHPC
用于制造由 UHPC 制成的高精度机架的创新型无废蜡模板
  • 批准号:
    387520741
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)

相似海外基金

NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    NE/Z000254/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SBIR Phase II: Development of a Novel Measurement Technology to Enable Longitudinal Multiomic Investigations of the Gut Microbiome
SBIR 第二阶段:开发新型测量技术以实现肠道微生物组的纵向多组学研究
  • 批准号:
    2314685
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
CAREER: Observational and Modeling Investigations of Pulsating Aurora Electrodynamics
职业:脉动极光电动力学的观测和建模研究
  • 批准号:
    2339961
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
  • 批准号:
    2400227
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAS: Cu, Fe, and Ni Pincer Complexes: A Platform for Fundamental Mechanistic Investigations and Reaction Discovery
CAS:Cu、Fe 和 Ni 钳配合物:基础机理研究和反应发现的平台
  • 批准号:
    2349827
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
  • 批准号:
    MR/Y503472/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Natural Traces: Natural Traces in forensic investigations - how the analysis of non-human evidence can solve crime
自然痕迹:法医调查中的自然痕迹 - 非人类证据分析如何解决犯罪
  • 批准号:
    EP/Y036743/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigations into aryl nitriles for protein modification via an untapped mode of reactivity
通过未开发的反应模式研究芳基腈用于蛋白质修饰
  • 批准号:
    EP/X037819/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334542
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了