Spatial and spatio-temporal GARCH models
空间和时空 GARCH 模型
基本信息
- 批准号:412992257
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop new models in spatial statistics, which deals with the analysis of random processes in space. Such processes are highly important in empirical research and particularly in econometrics. For instance, spatial statistics covers the analysis of processes on the surface of the Earth or the atmosphere, like air pollutants and particulate matters, regional prices for building land, or the population in municipalities. Generally, one can observe that observations, which are close together in space, are more similar than observations that are more distant in space; e.g., if the prices for building land are high in one municipality, then one might expect high prices in the neighboring municipalities. This phenomenon can be modeled by spatial autoregressive processes.Beside this spatial dependence of the observed values, an analog dependence can be observed for the variation of the data and the conditional heteroscedasticity. In this project, statistical models should be developed for data showing this behavior. In particular, the spatial model is defined in an analogous manner to the time-series ARCH model invented by Robert F. Engle (1982), who won the Nobel Memorial Prize in Economics for this theory in 2003.In addition, a multivariate spatial ARCH model should be introduced, such that several statistical variables can be modeled simultaneously, like for instance, several environmental pollutants and particulate matters. For this example, the spatial dependence is influenced by the wind direction and speed, which are in fact stochastic variables. Thus, a further aspect of the project is the analysis of stochastic spatial dependence and weighting schemes.
该项目旨在开发空间统计的新模型,该模型涉及空间随机过程的分析。这样的过程在实证研究中非常重要,尤其是在计量经济学中。例如,空间统计包括对地球表面或大气表面的过程进行分析,如空气污染物和颗粒物、建筑用地的区域价格或市政当局的人口。一般来说,人们可以观察到,在空间上靠近的观测比在空间上更远的观测更相似;例如,如果一个市政当局的建设用地价格很高,那么人们可能会认为邻近的市政当局的价格也会很高。这种现象可以用空间自回归过程来模拟,除了观测值的空间相关性外,数据的变化和条件异方差也可以观察到类似的相关性。在这个项目中,应该为显示这种行为的数据开发统计模型。特别是,空间模型的定义方式类似于2003年因该理论而获得诺贝尔经济学奖的罗伯特·F·恩格尔(Robert F.Engle)(1982)发明的时间序列ARCH模型。此外,还应引入多变量空间ARCH模型,以便可以同时对几个统计变量进行建模,例如几个环境污染物和颗粒物。在这个例子中,空间相关性受到风向和风速的影响,而风向和风速实际上是随机变量。因此,该项目的另一个方面是分析随机空间相关性和加权方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Philipp Otto其他文献
Professor Dr. Philipp Otto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Philipp Otto', 18)}}的其他基金
Statistical Learning of High-Dimensional Spatial Dependence Structures
高维空间依赖结构的统计学习
- 批准号:
501539976 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
- 批准号:19ZR1415200
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
- 批准号:
RGPIN-2016-03787 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
- 批准号:
RGPIN-2016-03787 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A new approach to spatio-temporal analysis of shallow landslide from process geomorphology, historical geomorphology and spatial information science
过程地貌学、历史地貌学和空间信息科学的浅层滑坡时空分析新方法
- 批准号:
19H01371 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
- 批准号:
RGPIN-2016-03787 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
III: Small: Adopting Machine Learning Techniques for Big Spatial and Spatio-temporal Data and Applications
III:小:采用机器学习技术处理大时空数据和应用
- 批准号:
1907855 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
- 批准号:
RGPIN-2016-03787 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CBMS Conference: Bayesian Modeling for Spatial and Spatio-Temporal Data
CBMS 会议:空间和时空数据的贝叶斯建模
- 批准号:
1642617 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
- 批准号:
RGPIN-2016-03787 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
- 批准号:
RGPIN-2016-03787 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Epidemiological and Spatial Analysis of Air Pollutants as Risk Factors for Autism: A Population-Based Analysis in BC
空气污染物作为自闭症危险因素的流行病学和空间分析:不列颠哥伦比亚省基于人口的分析
- 批准号:
350073 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Studentship Programs