Conformal fields from AdS flows - Construction of conformal field theories using renormalisation group flow equations in Anti-de-Sitter space
AdS 流的共形场 - 使用反德西特空间中的重正化群流方程构建共形场论
基本信息
- 批准号:415803368
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Conformal field theories (CFTs) have found a variety of applications, including condensed matter systems, quantum chromodynamics and two-dimensional quantum gravity. Due to their high amount of symmetry, which greatly constrains the form of correlation functions, a CFT may also be the first interacting quantum field theory to be rigorously constructed in four dimensions. An important example is maximally supersymmetric Yang-Mills theory with gauge group SU(N), which in the planar limit N→∞ shows an integrable structure, i.e., the data not fixed by conformal symmetry (the conformal data) can be obtained as solution of algebraic equations. This is a highly active research field, but in this limit the theory is not unitary and one also needs to be able to calculate 1/N-corrections. The overall aim of this proposal is to derive an integro-differential formula describing the change of the conformal data with N, which would then allow to systematically calculate corrections to all orders in 1/N to the planar limit, or even to determine the conformal data for finite N numerically (with the planar limit determining the initial conditions), and thus solve the theory completely. While a similar formula exists to determine changes of the conformal data with the coupling constant, it can not be applied straightforwardly since various non-degeneracy conditions, which are needed for this formula, are not fulfilled for the initial conditions (determined by the free theory). In the planar limit N→∞, it is much more likely that such non-degeneracy conditions can be fulfilled.To derive this formula, I want to use the renormalisation group flow equations to first construct a quantum field theory in Anti-de-Sitter (AdS) space (to all orders in perturbation theory), and then restrict this theory to the conformal boundary of AdS. While in general symmetries of the theory are broken in intermediate steps of the construction of the quantum theory, and may not be restored in the end if there is an anomaly, spacetime symmetries can usually be maintained throughout. By restricting the quantum theory from AdS to its conformal boundary, the AdS spacetime symmetry of the theory is enhanced to a conformal symmetry. This method therefore provides a new way to systematically construct CFTs which are manifestly non-anomalous, and would already constitute an important result in its own right. In a second step, I want to investigate the operator product expansion (OPE) for the AdS theory, and derive a formula for the changes of the OPE coefficients with the coupling constant. This generalises the corresponding formula in flat space, which was also obtained using renormalisation group flow equations, and is a precursor of the formula describing the change of the conformal data. Lastly, using the AdS/CFT correspondence I will determine the analogue formula for the dual CFT that describes changes of the OPE coefficients with N, and from this the formula for the conformal data.
共形场论在凝聚态系统、量子色动力学和二维量子引力等领域有着广泛的应用。由于它们的高度对称性,极大地限制了相关函数的形式,CFT也可能是第一个在四维中严格构建的相互作用量子场论。一个重要的例子是具有规范群SU(N)的最大超对称杨-米尔斯理论,它在平面极限N→∞中表现出可积结构,即,不被共形对称固定的数据(共形数据)可以作为代数方程的解来获得。这是一个非常活跃的研究领域,但在这个极限下,理论不是单一的,还需要能够计算1/N修正。这个提议的总体目标是导出一个描述共形数据随N变化的积分-微分公式,这将允许系统地计算1/N到平面极限的所有阶次的修正,甚至可以用数值方法确定有限N的共形数据(平面极限确定初始条件),从而完全解决理论。虽然存在类似的公式来确定共形数据随耦合常数的变化,但它不能直接应用,因为该公式所需的各种非简并条件对于初始条件(由自由理论确定)不满足。在平面极限N→∞中,这种非简并条件更有可能满足。为了推导这个公式,我想使用重整化群流方程首先在反德西特(AdS)空间(到微扰论中的所有阶)中构造一个量子场论,然后将这个理论限制在AdS的共形边界上。虽然一般来说,理论的对称性在量子理论构建的中间步骤中被打破,并且如果有异常,最终可能无法恢复,但时空对称性通常可以保持始终。通过将量子理论从AdS限制到其共形边界,将理论的AdS时空对称性增强为共形对称性。因此,这种方法提供了一种新的方法来系统地构建明显非异常的CFTs,并且已经构成了其本身的重要结果。在第二步中,我想研究AdS理论的算子乘积展开(OPE),并推导出OPE系数随耦合常数变化的公式。这概括了平坦空间中的相应公式,该公式也是使用重整化群流方程获得的,并且是描述保形数据变化的公式的前体。最后,利用AdS/CFT对应关系,我将确定描述OPE系数随N变化的对偶CFT的模拟公式,并由此确定保形数据的公式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Markus Fröb其他文献
Dr. Markus Fröb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
手性Salen配合物催化与底物诱导的不对称多组分Kabachnik-Fields反应
- 批准号:21162008
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Landscape-climate disequilibrium in dune fields
沙丘地区的景观-气候不平衡
- 批准号:
DE240100552 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Bridging fields and expanding research opportunities with the timescale of life
弥合不同领域并扩大研究机会与生命的时间尺度
- 批准号:
2318917 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
- 批准号:
2321297 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
- 批准号:
EP/Z000157/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
- 批准号:
2412147 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Atomic sensors for dark matter, rotation and magnetic fields
用于暗物质、旋转和磁场的原子传感器
- 批准号:
DP240100534 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Investigating Magnetic Fields in High-Mass Pre-stellar Cores using ALMA
使用 ALMA 研究高质量前恒星核心的磁场
- 批准号:
24K17100 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fourier analytic techniques in finite fields
有限域中的傅立叶分析技术
- 批准号:
EP/Y029550/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
- 批准号:
2321298 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant