OrbitFlySens - Optical manipulation of flying microparticles in the hollow core of a photonic crystal fiber by orbital angular momentum modes for innovative fiber sensing applications

OrbitFlySens - 通过轨道角动量模式对光子晶体光纤空心中的飞行微粒进行光学操纵,用于创新光纤传感应用

基本信息

项目摘要

Conventional fiber optic sensors rely mostly on backscattering processes or discrete sensing elements, e.g., fiber Bragg gratings, in sensor fibers. The research project OrbitFlySens pursues a novel sensor concept based on optically trapped microparticles orbiting in hollow core fibers. By exploiting the influence on the particle motion of physical quantities such as temperature, pressure, electric field or impurities along the hollow core fiber, the "flying" microparticles can be used as moveable microsensors that in principle can be propelled and read out optically over kilometer-long hollow core fibers. The extension of the previous concept of axially-moved particles by an additional orbital motion decouples the axial motion used for particle positioning from the actual sensing mechanism. This enables an improved spatial resolution in the µm range, a more flexible application and the vectorial determination of electric fields. In the course of the project HiFlySens excellent results have been achieved for the axial localization of particles and the control of their motion along the fiber. For stationary particles a spatial resolution in the range of the particle size was accomplished, for moving particles, for example in the context of temperature measurements up to 200°C, in the sub-mm range. The achievable sensor resolution is significantly limited by the axial particle motion required for the previous sensing mechanism. Therefore, within the project OrbitFlySens an orbital particle motion shall be used for sensing. For this purpose, the orbital angular momentum (OAM) of a laser beam will be transferred to an optically levitated particle in a hollow core fiber for the first time. For the overall goal of developing an orbiting flying particle sensor, the following research objectives are proposed: (I.) theoretical investigation of an orbiting particle optically trapped in the hollow core fiber by an OAM beam, (II.) generation of OAM modes and design of a twisted hollow core fiber that preserves OAM, (III.) exploration of a rotation detection scheme to measure the instantaneous orbital frequency of an optically levitated particle and its position in the fiber, (IV.) simultaneous control and measurement of the orbital and axial particle trajectories, and (V) demonstration of a sensing application. The two project partners plan to continue the cooperation of the HiFlySens project. The obtained knowledge as well as the expertise in particle localization (Schmauss) and hollow core fibers (Joly), will allow the sensor concept from HiFlySens to be extended with a 10-times enhanced spatial resolution. In addition, the novel principle also enables measurements of the electric field in terms of direction, magnitude, and phase in parallel to temperature measurements. For demonstration purposes, a sensor for combined temperature and electric field measurements with an application perspective in the energy sector is built and characterized.
传统的光纤传感器主要依赖于反向散射过程或离散的传感元件,例如,光纤布拉格光栅,在传感器光纤。研究项目OrbitFlySens追求一种新的传感器概念,该概念基于在空芯光纤中轨道运行的光学捕获微粒。通过利用物理量如温度、压力、电场或沿着空芯光纤的杂质对粒子运动的影响,“飞行”微粒可以用作可移动的微传感器,其原则上可以在更长的空芯光纤上被推进和光学读出。通过附加的轨道运动对轴向移动的粒子的先前概念的扩展使用于粒子定位的轴向运动与实际感测机构相混淆。这使得空间分辨率提高到μm范围,应用更加灵活,电场矢量测定也更加方便。在该项目的过程中,HiFlySens在颗粒的轴向定位和控制它们沿沿着纤维的运动方面取得了优异的成绩。对于静止颗粒,实现了颗粒尺寸范围内的空间分辨率,对于移动颗粒,例如在高达200°C的温度测量的情况下,实现了亚毫米范围内的空间分辨率。可实现的传感器分辨率受到先前感测机制所需的轴向粒子运动的显著限制。因此,在OrbitFlySens项目中,轨道粒子运动应用于传感。为此目的,激光束的轨道角动量(OAM)将首次转移到空芯光纤中的光悬浮粒子。围绕研制在轨飞行粒子传感器的总体目标,提出了以下研究目标:(一)通过OAM光束光学捕获在空芯光纤中的轨道粒子的理论研究,(II.)OAM模式的产生和保持OAM的扭曲空芯光纤的设计,(III.)探索一种旋转检测方案,以测量光学悬浮粒子的瞬时轨道频率及其在光纤中的位置,(IV.)同时控制和测量的轨道和轴向粒子轨迹,和(V)演示的传感应用。双方计划继续HiFlySens项目的合作。所获得的知识以及颗粒定位(Schmauss)和空芯光纤(Joly)的专业知识将使HiFlySens的传感器概念扩展到10倍的空间分辨率。此外,该新原理还使得能够在方向、幅度和相位方面与温度测量并行地测量电场。为了演示的目的,结合温度和电场测量与能源部门的应用前景的传感器的建立和特点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Nicolas Y. Joly其他文献

Professor Dr. Nicolas Y. Joly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Nicolas Y. Joly', 18)}}的其他基金

Rydberg atoms inside hollow-core photonic crystal fibre
空心光子晶体光纤内的里德伯原子
  • 批准号:
    316185019
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
  • 批准号:
    EP/Y021789/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
  • 批准号:
    EP/Y021339/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Pooled Optical Imaging, Neurite Tracing, and Morphometry Across Perturbations (POINT-MAP).
混合光学成像、神经突追踪和扰动形态测量 (POINT-MAP)。
  • 批准号:
    10741188
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidation of fear extinction mechanisms through in-vivo deep-brain optical imaging and manipulation focused on the activity dynamics in the prelimbic cortex
通过体内深部脑光学成像和操作阐明恐惧消退机制,重点关注前边缘皮层的活动动态
  • 批准号:
    22KJ0812
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Novel theory of optical manipulation based on luminescence
基于发光的光学操纵新理论
  • 批准号:
    23KJ1472
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Visualisation and manipulation of the mechano-spin conversion by non-contact optical measurement
通过非接触式光学测量实现机械自旋转换的可视化和操作
  • 批准号:
    23H01471
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An All Optical Platform for Modeling and Monitoring Early Neurodegeneration in Human Neural Circuits
用于建模和监测人类神经回路早期神经退行性变的全光学平台
  • 批准号:
    10538043
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
On chip optical microresonators for light emission, manipulation & sensing
用于光发射、操纵的片上光学微谐振器
  • 批准号:
    RGPIN-2020-06692
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
An All Optical Platform for Modeling and Monitoring Early Neurodegeneration in Human Neural Circuits
用于建模和监测人类神经回路早期神经退行性变的全光学平台
  • 批准号:
    10684701
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Optical creation and manipulation of Josephson junctions
约瑟夫森结的光学创建和操作
  • 批准号:
    545821-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了