Next-generation imaging biomarkers in neuro-oncology using artificial intelligence: overcoming key challenges towards clinically applicable AI
使用人工智能的神经肿瘤学下一代成像生物标志物:克服临床适用人工智能的关键挑战
基本信息
- 批准号:428223917
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the past decades, tremendous progress has been made in improving cancer patient treatment and outcomes. Brain tumors, which are the focus of this proposal, are however still associated with a predominantly poor prognosis due to their enormous heterogeneity and underlying complex biology. However, hope lies in individualized and molecularly targeted treatment approaches. In this context, it has become critical to develop accurate and broadly applicable biomarkers to assess the efficacy of these novel therapies. Magnetic resonance imaging (MRI) is of particular importance in this regard, and recent advances in the field of artificial intelligence (AI) have demonstrated remarkable progress in the quantitative analysis of radiological image data. In this project, we will build on and further expand our key developments from the first funding period of SPP-2177, with the goal of closing the gap towards implementing clinically applicable AI in the field of brain tumor imaging. By leveraging a large-scale multimodal data resource in neuro-oncology (with longitudinal multiparametric MRI, molecular and clinical data) with more than 5000 patients from previously conducted prospective multicenter clinical studies in neuro-oncology, the following key-objectives will be address within our project: (1) to further improve the performance, generalizability and clinical utility of our previously developed state-of-the-art AI models for brain tumor segmentation model for quantitative tumor response assessment through implementation of temporally consistent, uncertainty aware and continual learning models; (2) to implement novel privacy-preserving AI techniques which will allow to overcome the need of data-sharing between institutions when using multi-institutional data for the development of AI models based on diverse population samples; and (3) to implement interpretable predictions of AI models and thereby addressing the “black-box” nature of AI based classification models. In summary, the anticipated developments will not only address the key challenges towards achieving clinically applicable AI in the field of brain tumor imaging, but also serve as a blueprint for the meaningful application of AI in the field of radiology.
在过去的几十年里,在改善癌症患者的治疗和结果方面取得了巨大进展。然而,脑肿瘤是该提案的重点,由于其巨大的异质性和潜在的复杂生物学,其预后仍然主要较差。然而,希望在于个体化和分子靶向治疗方法。在这种情况下,开发准确和广泛适用的生物标志物来评估这些新疗法的疗效变得至关重要。磁共振成像(MRI)在这方面尤其重要,人工智能(AI)领域的最新进展表明,在放射图像数据的定量分析方面取得了显着进展。在这个项目中,我们将在SPP-2177第一个资助期的基础上进一步扩大我们的关键发展,目标是缩小在脑肿瘤成像领域实施临床适用AI的差距。通过利用神经肿瘤学中的大规模多模态数据资源(具有纵向多参数MRI、分子和临床数据),其中超过5000例患者来自先前进行的神经肿瘤前瞻性多中心临床研究,我们的项目将解决以下关键目标:(1)为进一步提高性能,我们以前开发的国家的普遍性和临床实用性,用于脑肿瘤分割模型的人工智能模型,用于通过实施时间一致、不确定性感知和持续学习模型进行定量肿瘤反应评估;(2)实施新的隐私保护人工智能技术,这将允许在使用多机构数据开发基于不同人群样本的人工智能模型时克服机构之间的数据共享需求;以及(3)实现AI模型的可解释预测,从而解决基于AI的分类模型的“黑箱”性质。总之,预期的发展不仅将解决在脑肿瘤成像领域实现临床适用AI的关键挑战,还将成为AI在放射学领域有意义应用的蓝图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Klaus Maier-Hein其他文献
Professor Dr. Klaus Maier-Hein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Klaus Maier-Hein', 18)}}的其他基金
Characterization of Neurodevelopmental Disease Trajectories using Richly Annotated Sequences of Graphs (RICHGRAPH)
使用丰富注释的图序列 (RICHGRAPH) 表征神经发育疾病轨迹
- 批准号:
290781790 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Einfluss der Elektrokonvulsionstherapie auf Hirnmorphologie und -funktion: Untersuchungen mit multimodaler MRT-Bildgebung
电休克治疗对大脑形态和功能的影响:使用多模态 MR 成像的研究
- 批准号:
193053852 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
- 批准号:30470495
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
- 批准号:
EP/Z531078/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Elements: MVP: Open-Source AI-Powered MicroVessel Processor for Next-Generation Vascular Imaging Data
要素:MVP:用于下一代血管成像数据的开源人工智能微血管处理器
- 批准号:
2311245 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Design and synthesis of a next generation glycobiology toolbox for cell surface labeling
用于细胞表面标记的下一代糖生物学工具箱的设计和合成
- 批准号:
10699270 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Recruitment, Engagement, and Access for Community Health Equity for BRAIN Next-Generation Human Neuroimaging Research and Beyond (REACH for BRAIN)
改善 BRAIN 下一代人类神经影像研究及其他领域的社区健康公平的招募、参与和获取 (REACH for BRAIN)
- 批准号:
10730955 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Next generation transcranial ultrasound-based neuromodulation using phase shift nanoemulsions
使用相移纳米乳剂的下一代经颅超声神经调节
- 批准号:
10577371 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
- 批准号:
10622691 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Ameloblast Differentiation and Amelogenesis: Next-Generation Models to Define Key Mechanisms and Factors Involved in Biological Enamel Formation
成釉细胞分化和成釉细胞:定义生物牙釉质形成涉及的关键机制和因素的下一代模型
- 批准号:
10874800 - 财政年份:2023
- 资助金额:
-- - 项目类别:
next-generation sequencing approaches to identify genotype-phenotype relationships during miRNA tuning of neural crest osteogenesis
新一代测序方法可识别神经嵴成骨过程中 miRNA 调节过程中的基因型与表型关系
- 批准号:
10579800 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Exoplanet Imaging with Next Generation Observatories.
使用下一代天文台进行系外行星成像。
- 批准号:
2867691 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship