Study of Nonlinear Partial Differential Equations from the View Point of Functional Analysis
从泛函分析的角度研究非线性偏微分方程
基本信息
- 批准号:01460004
- 负责人:
- 金额:$ 3.97万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (B)
- 财政年份:1989
- 资助国家:日本
- 起止时间:1989 至 1990
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied nonlinear partial differential equations from many aspects in the period 1989 May-1991 March. Masuda succeeded first in showing the existence of stable periodic solutions of reaction-diffusion systems of some type, the most important class of nonlinear parabolic equations. He also considered the heat equation in the form u=*u+a (x) u^p and showed any non-negative solution blows up in a finite time if a (x) is posive at some point in the domain considered. Matano considered the nonlinear heat equation in some one-dimensional space interval with Dirichlet boundary condition.He could show the remarkable result that any solutions with a continuous function as the initial data blows up at a (at most) finite number of points.Ishimura showed the existence and nonexistence of multi-valued solutions of nonlinear elliptic equations of the form *u=u^p. shouji made research into the permanent progressive waves and analyzed the bifurcation of progressive waves. Fukaya made research into nonlinear differential equations in differential geometry. He clarified the structure of small ball in the Riemannian manifold with sectional curvature less than one in absolute value.Kataoka succeeded in showing the hypoellipticity of degenerate elliptic equations.
1989年5月至1991年3月期间,我们从多个方面研究了非线性偏微分方程。Masuda首先成功地证明了某些类型的反应扩散系统的稳定周期解的存在性,这是最重要的一类非线性抛物方程。他还考虑了形式为u=*u+a(X)u^p的热方程,并证明了如果a(X)在所考虑的区域中的某一点为正,则任何非负解在有限时间内爆破。Matano研究了具有Dirichlet边界条件的一维空间中的非线性热方程,证明了任何以连续函数为初值的解在(至多)有限点处爆破。石村证明了形式为*u=u^P的非线性椭圆型方程多值解的存在性和不存在性。Shouji研究了永久行波,并分析了行波的分支。Fukaya对微分几何中的非线性微分方程进行了研究。他阐明了黎曼流形中截面曲率绝对值小于1的小球的结构。片冈成功地证明了退化椭圆型方程的亚椭圆性。
项目成果
期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
深谷 賢治: "Hausdorff Covergence of Riemannian manifolds and its applications" Advanced Studies in Pure Math.18. 143-238 (1990)
Kenji Fukaya:“黎曼流形的豪斯多夫收敛及其应用”纯数学高级研究143-238(1990)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
増田 久弥: "Asymptotic behavior of sosolutions of reactionーdiffusion systems of Volterra type" J.Differential Equations.
Hisaya Masuda:“Volterra 型反应扩散系统解的渐近行为”J.Differential Equations。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kyuya Masuda,: "Asymptotic behavior of solutions of reaction-diffusion systems of Volterra type" J. Differential Equations.
Kyuya Masuda,:“Volterra 型反应扩散系统解的渐近行为”J. 微分方程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naoyuki Ishimura,: "Nonlinear eigenvalue problem associated with the generalized capollarity equation" J. Fac. Sci. Univ. Tokyo Sect. IA,. 37. 457-466 (1990)
Naoyuki Ishimura,:“与广义毛极性方程相关的非线性特征值问题”J. Fac。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshiyuki Kobayashi: "Asymptotic behaviours of the null vaiety for a convex domain in a non-positively curved space form" Journal of the Faculty of the Science,the University of Tokyo. 36. 389-478 (1989)
Toshiyuki Kobayashi:“非正弯曲空间形式中凸域的零簇的渐近行为”,东京大学理学院学报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MASUDA Kyuya其他文献
MASUDA Kyuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MASUDA Kyuya', 18)}}的其他基金
Study on Navier-Stokes equations and the related nonlinear differential equations
纳维-斯托克斯方程及相关非线性微分方程研究
- 批准号:
18540222 - 财政年份:2006
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the Navier-Stokes equation and the related topics on the nonlinear differential equations
纳维-斯托克斯方程及非线性微分方程相关课题的研究
- 批准号:
15540215 - 财政年份:2003
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Navier-Stokes equations and related nonlinear partial differential equations
纳维-斯托克斯方程及相关非线性偏微分方程研究
- 批准号:
12640223 - 财政年份:2000
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Navier-Stokes equations and related nonlinear partial differential equations
纳维-斯托克斯方程及相关非线性偏微分方程研究
- 批准号:
10440055 - 财政年份:1998
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Solvability for a nonlinear heat equation with singular initial data
具有奇异初始数据的非线性热方程的可解性
- 批准号:
19K14569 - 财政年份:2019
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric structure of manifold and the blow-up problem of nonlinear heat equation
流形几何结构与非线性热方程的爆炸问题
- 批准号:
23740128 - 财政年份:2011
- 资助金额:
$ 3.97万 - 项目类别:
Grant-in-Aid for Young Scientists (B)