EXACT SYNTHESIS OF ASSOCIATIVE MEMORY CIRCUITS BY MEANS OF RECURSIVE NEURAL NETWORKS
通过递归神经网络精确综合联想存储电路
基本信息
- 批准号:05452211
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (B)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The results obtained in the research term (1993-1994) are as follows :1. We consider a neural network in which n neurons are arranged on a ring. We assume that each neuron is connected only with the preceding k (*n-1) neurons and the coefficients of connections are tapered, that is, the magnitude of coefficients decrease along with distance. This model is derived from the real biological knowledge and is a special kind of CNNs (Cellular Neural Network). We examined the number of equilibrium points of the above neural networks and proved that (1) the number is only one for k=1 or 2, three for k=3, and four for k=4.2. We may conjecture that the number of equilibrium points are extremely few for tapered neural networks. We therefore examined another limiting case where k=n-1 and the magnitude of each coefficients is unity. We showed in this case that (1) there exist a network which can possess are at least 2^n/2 equilibrium points, and (2) there exists a network which can possess at least 2^n/4 stable equilibrium points. Thus we showed that the number of equilibrium points increases exponentially with k.3. Concerning the stability of the CNN,we generalized the theorem recently given by Gilli. Gilli's theorem requires for a prescribed matrix A the condition that there exists a positive diagonal matrix D such that DA+A^TD is a symmetric matrix, while our theorem requires that GAMMA A+A^T GAMMA is a symmetric matrix where GAMMA is a positive definite matrix.4. We gave the necessary and sufficient condition for a set of equilibrium points to be realizable by means of a neural network whose all diagonal elements have identical value and all nondiagonal elements are also identical.5. In general equilibrium points correspond to solutions of a nonlinear resistive circuits. So we investigated about the number of solutions of these circuits and had many presentations as shown in REFERENCES below.
1993-1994年的研究结果如下:1.我们考虑一个神经网络,其中n个神经元排列在一个环上。我们假设每个神经元只与前面的k(*n-1)个神经元连接,并且连接的系数是锥形的,即系数的大小沿着距离减小。该模型来源于真实的生物知识,是一种特殊的细胞神经网络。我们检查了上述神经网络的平衡点的数量,并证明了(1)对于k=1或2,平衡点的数量只有一个,对于k=3,平衡点的数量只有三个,对于k=4.2,平衡点的数量只有四个。我们可以推测,锥形神经网络的平衡点的数量是非常少的。因此,我们研究了另一种极限情况,其中k=n-1,并且每个系数的幅度是1。在这种情况下,我们证明了(1)存在一个网络,它至少可以拥有2^n/2个平衡点,(2)存在一个网络,它至少可以拥有2^n/4个稳定的平衡点。因此,我们表明,平衡点的数量随k呈指数增长。关于CNN的稳定性,我们推广了Gilli最近给出的定理。Gilli定理要求给定的矩阵A存在一个正对角矩阵D使得DA+A^TD是对称矩阵,而我们的定理要求<$MA +A^T <$MA是对称矩阵,其中<$MA是正定矩阵。4.给出了一组平衡点可通过一个对角元素相同且非对角元素相同的神经网络实现的充要条件.在一般的平衡点对应的非线性电阻电路的解决方案。因此,我们研究了这些电路的解决方案的数量,并在下面的参考文献中显示了许多演示文稿。
项目成果
期刊论文数量(90)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Nishi: "On the Realization of Prescribed Sets of Equilibrium Points of One-Dimensional Neural Networks with Tapered Connecting Coefficients" Proceedings of NOLTA'93. 235-238 (1993)
T.Nishi:“关于具有锥形连接系数的一维神经网络的规定平衡点集的实现”NOLTA93 论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tetsuo Nishi: "On the Realization of Prescribed Sets of Equilibrium Points of One-Dimensional Neural Networks with Tapered Connecting Coefficients" Proc.NOLTA'93. Vol.1. 235-238 (1993)
Tetsuo Nishi:“关于具有锥形连接系数的一维神经网络的规定平衡点集的实现”Proc.NOLTA93。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Takahasi, T.Nishi: "On the Equilibrium Points of Hopfield-Type Neural Networks with the Cyclic Connection Matrix" Proceedings of NOLTA'94. 21-24 (1994)
N.Takahasi、T.Nishi:“关于具有循环连接矩阵的 Hopfield 型神经网络的平衡点”NOLTA94 论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yuji Kawane: "An Algorithm for Solving an Equation of Resistive Circuits Including Ideal Diodes as a Nonlinear Resistor" Proc.JTC-CSCC'93. Vol.1. 1-5 (1993)
Yuji Kawane:“一种求解包含理想二极管作为非线性电阻器的电阻电路方程的算法”Proc.JTC-CSCC93。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nishi: "Necessary and Sufficient Condition for Nonlinear Resistive Circuits Containing Ideal Diodes to have a Unique Solution" Proceedings of ECCTD'93. 1661-1666 (1993)
T.Nishi:“包含理想二极管的非线性电阻电路具有独特解决方案的必要和充分条件”ECCTD93 论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHI Tetsuo其他文献
NISHI Tetsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHI Tetsuo', 18)}}的其他基金
Circuit- and graph-theoretic approach to the accuracy-guaranteed algorithm for a general-purpose circuit simulator
通用电路模拟器的精度保证算法的电路理论和图论方法
- 批准号:
20560374 - 财政年份:2008
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical study on the number of solutions and the stability on transistor circuits
晶体管电路解数及稳定性的理论研究
- 批准号:
13650414 - 财政年份:2001
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of Analysis Method for Very High Speed Integrated Circuits Composed of Distributed and Lumped Elements
分布式集总元件超高速集成电路分析方法研究
- 批准号:
08650435 - 财政年份:1996
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-operative Research of Analysis Method for Very High Speed Integrated Circuits Composed of Distributed and Lumped Elements
分布式集总元件超高速集成电路分析方法的协同研究
- 批准号:
06302043 - 财政年份:1994
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Research on Efficient Numerical Analysis Method for Nonlinear Resistive Circuits and on the Properties of the Solutions of the above Circuits
非线性电阻电路高效数值分析方法及上述电路解的性质研究
- 批准号:
01550313 - 财政年份:1989
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
- 批准号:
23K24829 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
- 批准号:
23K11120 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
- 批准号:
23K10454 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
- 批准号:
23H03451 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant