Liquid phase growth of GeSi bulk alloy and application to thermoelectric devices

GeSi块体合金的液相生长及其在热电器件中的应用

基本信息

  • 批准号:
    05650295
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1994
  • 项目状态:
    已结题

项目摘要

The techniques demanded eagerly for highly effiecient thermoelectric device, i.e., in this case, 1) growth of GeSi bulk alloy with homogeneous composition, 2) control in electric ocnducton, and 3) device processes for GeSi alloy, have been developed.1)The "yo-yo batch system", useful for mass-production of GeSi alloy substrates, has been developed, in which some Si substrates are placed in the yo-yo solute-feeding growth system. This system makes it possible to replace the middle Si substrate by a GeSi alloy plate after a sufficiently large number of yo-yo process. The experiments using a three-substrate system led successfully GeSi alloy plates with a thickness of 0.4mm after 62 yo-yo times.The solute-feeding Czochralski method, developed for growing homogeneous bulk alloy, was also examined, and a GeSi bulk alloy with constant composition could be pulled at the constant temperature of 1050 C under Si solute-feeding conditions.2)Based on the growth technique of n-type alloys from Sn solvent, developed in last year, the growth technique of p-type alloy has been investigated by adding Ga to Sn solvent. As a result, p-type alloys with hole concentration of 10^<18> to 10^<19> cm^<-3> became controllable.3)To establish the GeSi device processes, p-n junctions were fabricated by liquid phase epitaxy. The diodes formed on the grown GeSi layr showed rectifying I-V characteristics cleary. The oxidation experiments of GeSi alloy were also carried out. The results, for example, such as the difference in oxidation speed of Si and Ge, will come in useful for advanced device technology.Thus, the valuable results for progressing the researchs in thermo-electric devices were obtained by this project.
在这种情况下,迫切需要高效率的热电器件的技术,即:1)生长成分均匀的GeSi块体合金,2)电活动的控制,3)GeSi合金的器件工艺。1)已开发出用于大规模生产GeSi合金衬底的“YO-YO批量系统”,其中一些Si衬底被放置在YO-YO溶质加料生长系统中。这一系统使得在经过足够多的溜溜球工艺后,用GeSi合金板来代替中间的Si衬底成为可能。采用三基片系统,成功地制备了厚度为0.4 mm的GeSi合金板材,并对生长均匀块体合金的溶质提拉法进行了研究,在1050℃的恒温下,Si溶质加料条件下可以拉制出恒定成分的GeSi块体合金。2)基于去年开发的从锡溶剂中生长n型合金的技术,研究了在锡溶剂中添加Ga的方法生长p型合金的工艺。因此,空穴浓度在10^~19 cm之间的p型合金是可控的。3)为了建立GeSI器件工艺,采用液相外延技术制备了p-n结。在生长的GeSi层上形成的二极管显示出明显的整流I-V特性。还进行了GeSi合金的氧化实验。例如,硅和锗的氧化速度的差异等结果将对先进的器件技术有所帮助,从而为推进热电器件的研究取得了有价值的结果。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tokuzo Sukegawa, Masakazu Kimura, Hironobu Katsuno and Akira Tanaka: "GeSi Bulk Alloy Growth by yo-yo Solute-Feeding Method" Bulletin of the Research Institute of Electronics, Shizuoka University. Vol.29, No.2. 31-39 (1994)
Tokuzo Sukekawa、Masakazu Kimura、Hironobu Katsuno 和 Akira Tanaka:“通过溜溜球溶质供给法生长 GeSi 块状合金”静冈大学电子研究所通报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
助川 徳三: "yo-yo溶質供給法によるGeSiバルク混晶の成長" 静岡大学電子工学研究所研究報告. 29-2. 31-39 (1994)
Tokuzo Sukekawa:“通过溜溜球溶质供应法生长GeSi块状混合晶体”静冈大学电子研究所研究报告29-2(1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
助川徳三: "yo-yo溶質供給法によるGeSiバルク混晶の成長" 静岡大学電子工学研究所研究報告. 29-2. 31-39 (1994)
Tokuzo Sukekawa:“通过溜溜球溶质供应法生长GeSi块状混合晶体”静冈大学电子研究所研究报告29-2(1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUGEGAWA Tokuzo其他文献

SUGEGAWA Tokuzo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了