Construction of Parameter-Dependent Lyapunov Functions for Robust Control
用于鲁棒控制的参数相关李亚普诺夫函数的构造
基本信息
- 批准号:05650393
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1) In the first year of the project term, investigations were on ways to construct Lyapunov functions for linear systems represented by polynomials with uncertain coefficient parameters. This leads to an expected result that there actually exist a parameter-dependent Lyapunov function for the given polytopic uncertain polynomial. The Lyapunov function is also a polytope of Lyapunov functions that correspond to the extreme polynomials of the polytope of polynomials. We see a one-to-one correspondence between parameters of Lyapunov functions and those of polynomials.2) With this result, we then pass to uncertain nonlinear systems, anticipating some parallel results with the linear case. Deliberation together with numerical experiences, however, led us to conclude that for nonlinear systems seach for parameter-dependent Lyapunov functions was harder than expected. We were thus obliged to reconsider our idea and began to look for the "opposite-end" problem, so-called common Lyapunov function problem. This is because common Lyapunov functions for several systems make us easy to handle uncertain nonlinear systems.3) In the final year, we set out to consider this problem for linear systems in the first place. We could successfully identify some classes of discerte-time linear systems that have common quadratic Lyapunov functions. This yields a sufficient condition for the This could also give a scope to explore results for uncertain nonlinear systems Lyapunof function approach.
1)在项目的第一年,研究了如何构建李雅普诺夫函数的线性系统表示的多项式与不确定系数参数。这导致了一个预期的结果,实际上存在一个参数依赖的李雅普诺夫函数给定的多面体不确定多项式。李雅普诺夫函数也是李雅普诺夫函数的多胞形,其对应于多项式多胞形的极值多项式。我们看到了李雅普诺夫函数的参数和多项式的参数之间的一一对应。2)有了这个结果,我们然后传递到不确定的非线性系统,预期一些平行的结果与线性情况。然而,考虑与数值经验,使我们得出结论,非线性系统的参数依赖的李雅普诺夫函数的搜索比预期的更难。因此,我们不得不重新考虑我们的想法,并开始寻找“相反的结束”的问题,所谓的共同李雅普诺夫函数问题。这是因为几个系统的共同李雅普诺夫函数使我们很容易处理不确定的非线性系统。3)在最后一年,我们首先考虑线性系统的这个问题。我们可以成功地识别几类具有共同的二次李雅普诺夫函数的离散时间线性系统。这也可以为不确定非线性系统的Lyapunof函数方法提供一个探索结果的范围。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Mori, T.Mori, Y.Kuroe & H.Kokame: "Classes of discrete linear systems having common quadratic Lyapunov functions" Proc.of 1995 American Control Conference. (in press).
Y.Mori、T.Mori、Y.Kuroe
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Mori&H.Kokame: "Polytopes of Lyapunov functions for polytopes of polynomials" Systems and Control Letters. (in press).
森先生
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takehiro Mori: "Polytopes of Lyapunov functions for polytopes of polynomials" Systems and Control Letters. (掲載予定).
Takehiro Mori:“多项式多面体的李雅普诺夫函数的多面体”系统和控制信件(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihiro Mori: "Classes of diocrete linear systems having eommon guadratic Lyapunov functions" Proceedings of 1995 American Control Conference. (掲載予定).
Yoshihiro Mori:“具有常见瓜德拉克李亚普诺夫函数的离散线性系统的类”1995 年美国控制会议论文集(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Mori&H.Kokame: "Parameter-dependent Lyapunov functions for polytope of polynomials" Proc.of 32nd IEEE Conf. on Decision and Control. 2012-2013 (1993)
森先生
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORI Takehiro其他文献
MORI Takehiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORI Takehiro', 18)}}的其他基金
Solution to the Common Lyapunov-Function Problem via Fusion of Numerical and thalytical Aspec
通过数值和数学 Aspec 的融合解决常见的 Lyapunov 函数问题
- 批准号:
07650489 - 财政年份:1995
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parameter Space Stability Analysis Revisited : Kharitonov-Type Theorems and Their Application
重温参数空间稳定性分析:Kharitonov 型定理及其应用
- 批准号:
01550332 - 财政年份:1989
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Characteristics of fault slip and their parameter dependence : An experimental approach
断层滑动的特征及其参数依赖性:实验方法
- 批准号:
18740272 - 财政年份:2006
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Parameter Dependence in Weakly Hyperbolic Dynamical Systems
弱双曲动力系统中的参数依赖性
- 批准号:
0245359 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant














{{item.name}}会员




