Hydrogen Absorption and Desorption Characteristics of Proton Conductor Litium Compounds

质子导体锂化合物的吸放氢特性

基本信息

  • 批准号:
    05680432
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1994
  • 项目状态:
    已结题

项目摘要

Hydrogen behavior in oxides is closely related to research and development of engineering materials such as fission and fusion reactor materials, high-corrosion resistance materials and fuel cell materials. There is limited information about hydrogen behavior in oxides. In the present study, Li_2O,Li_2ZrO_3 and SrCe_<0.95>Yb_<0.05>O_3 have been selected as candidates of proton conductors, and the hydrogen absorption and desorption behavior were examined. The electrical conductivities of Li_2O and Li_2ZrO_3 were measured in vacuum, oxygen and in O_2/H_2O atmospheres (P_<H20> of 0,100Pa, 400Pa and 872Pa) in the temperature range of 300-1000゚C by a impedance spectroscopy. The temperature dependence of conductivity multiplied by temperature (sigmaT) followed the relation sigmaT=Aexp (-E/RT). These results indicate that both samples are ionic conductors. The conductivities increased with increasing water vapor pressure in the oxygen atmosphere. The activation energies of conductivities of Li_2O and Li_2ZrO_3 were 64-68 kJ/mol and 97-101 kJ/mol, respectively. The hydrogen dissolution behavior of Li_2O and SrSrCe_<0.95>Yb_<0,05>O_3 was measured in the O_2/H_2O atmosphere by thermal desorption method. The hydrogen solubility was found to decrease with the temperatrue and to increase with the water vapor pressure. The equilibria between the atmosphere and oxides was discussed in terms of thermochemical reaction.
氢在氧化物中的行为与裂变与聚变反应堆材料、高耐腐蚀材料、燃料电池材料等工程材料的研究和开发密切相关。关于氢在氧化物中的行为的信息有限。本论文选择Li_2O,Li_2ZrO_3和SrCe_<0.95>Yb_<0.05>O_3作为质子导体的候选材料,研究了它们的吸放氢行为。用交流阻抗法测量了Li_2O和Li_2ZrO_3在真空、氧气和O_2/H_2O气氛(P_<H20>(0,100,400,872)Pa)中300-1000 ℃温度范围内的电导率。电导率乘以温度(σ T)的温度依赖性遵循关系式σ T =Aexp(-E/RT)。这些结果表明,两种样品都是离子导体。在氧气气氛中,电导率随着水蒸气压的增加而增加。Li_2O和Li_2ZrO_3的电导率活化能分别为64-68 kJ/mol和97-101 kJ/mol。用<0.95>热脱附法研究了Li_2O和SrSrCe_ Yb_(0,05)O_3在O_2/H_2O气氛中的氢溶解行为。氢的溶解度随温度的升高而减小,随水蒸气压的升高而增大。从热化学反应的角度讨论了气氛与氧化物之间的平衡。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Yamanaka et al.: "Hydrogen dissolution into lithium oxides" Technol,Rep. Osaka University. (投稿予定).
S.Yamanaka 等人:“氢溶解成锂氧化物”Technol,众议员大阪大学(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Yamanaka et al.: "Hydrogen dissolution into Yb-doped SrCeO_3" J.Alloys and Compounds. 231. 713-715 (1995)
S.Yamanaka 等人:“氢溶解到 Yb 掺杂的 SrCeO_3”J.合金和化合物。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Yamanaka, M.Okada, S.Komatuki and M.Miyake: "Hydrogen dissolution into Yb-doped SrCeO3" J.Alloys and Compounds. 231. 713-715 (1995)
S.Yamanaka、M.Okada、S.Komatuki 和 M.Miyake:“氢溶解到掺镱 SrCeO3 中”J.合金和化合物。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Yamanaka, M.Okada, S.Komatuki and M.Miyake: "Electrical conductivity of lithium oxides" J.Alloys and Compounds. (to be submitted.). (1996)
S.Yamanaka、M.Okada、S.Komatuki 和 M.Miyake:“锂氧化物的电导率”J.合金和化合物。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Yamanaka et al.: "Elcctrical conductivity of lithium oxides" J.Alloys and Compounds. (投稿予定).
S.Yamanaka 等人:“锂氧化物的电导率”J.合金和化合物(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMANAKA Shinsuke其他文献

YAMANAKA Shinsuke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMANAKA Shinsuke', 18)}}的其他基金

Development of Environmentally-Friendly High Power Density Thermoelectric Module by using Titanium Alloys
利用钛合金开发环保型高功率密度热电模块
  • 批准号:
    17360465
  • 财政年份:
    2005
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Preparation of Energy Devices with Oxide nanohole arrays.
氧化物纳米孔阵列能源器件的制备。
  • 批准号:
    15360511
  • 财政年份:
    2003
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploration of the energy conversion function of actinide compounds by protium probe
氕探针探索锕系化合物的能量转换功能
  • 批准号:
    12480139
  • 财政年份:
    2000
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CHEMICAL STATE OF HYDROGEN IN ZIRCONIUM OXIDE FILMS
氧化锆薄膜中氢的化学状态
  • 批准号:
    10480120
  • 财政年份:
    1998
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Standard Grant
Revolutionising Electrolysers for Low-Cost Green Hydrogen Production
革新电解槽以实现低成本绿色制氢
  • 批准号:
    IM240100216
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Mid-Career Industry Fellowships
High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
  • 批准号:
    DE240100863
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Discovery Early Career Researcher Award
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Discovery Early Career Researcher Award
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
  • 批准号:
    24K17650
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
  • 批准号:
    EP/Y007778/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Research Grant
EXSOLUTION-BASED NANOPARTICLES FOR LOWEST COST GREEN HYDROGEN VIA ELECTROLYSIS
基于萃取的纳米颗粒通过电解生产成本最低的绿氢
  • 批准号:
    10102891
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    EU-Funded
Delivery of liquid Hydrogen for Various Environment at High Rate
为各种环境高速输送液氢
  • 批准号:
    10110515
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    EU-Funded
The European Hydrogen Academy (HyAcademy.EU)
欧洲氢学院 (HyAcademy.EU)
  • 批准号:
    10110448
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了