Synthesis tool for conventional and hybrid powertrains

用于传统和混合动力系统的综合工具

基本信息

项目摘要

In this research project, a synthesis tool for conventional and hybrid powertrain concepts will be developed. A computer-assisted synthesis enables to investigate all theoretically conceivable combinations of the aggregate-specific design parameters. Therefore, promising concepts can be identified depending on the defined requirements and evaluation criteria. By generating all theoretically conceivable parameter combinations, new variants of topologies, aggregates or components can be identified by means of synthesis. The synthesis programs available at the institutes of the two applicants will be further developed and coupled in the framework of this project in order to build a tool for powertrain synthesis. Since the number of degrees of freedom of a powertrain is very high, new approaches are needed to be able to realize an optimization in the sense of the defined criteria. For this reason, an identifier is developed which enables optimization of the overall system based on physical expertise. For this purpose, potential parameters are developed which the identifier uses to choose suitable measures in order to optimize the properties of the powertrain based on the defined evaluation criteria. The decisions that the identifier makes during a synthesis process are supported by a data-based, self-learning system. As a result, existing expert knowledge in the form of physical connections as well as development experience is transferred into algorithms as well as program structures and used for the optimization of complex systems. The two applicants cover the internal combustion engine and transmission. As a consequence, the consideration of electric machines, power electronics and batteries is simplified in this project. However, if the project has been successfully completed, a further research project with additional partners will be pursued in order to be able to consider the electrical aggregates of a powertrain more accurately.
在这个研究项目中,将开发一个用于传统和混合动力系统概念的综合工具。计算机辅助合成能够研究聚集体特定设计参数的所有理论上可能的组合。因此,可以根据定义的要求和评估标准确定有前途的概念。通过生成所有理论上可能的参数组合,可以通过合成识别拓扑、聚集体或组件的新变体。两个申请人的研究所提供的综合程序将在本项目的框架内进一步开发和耦合,以构建动力系统综合工具。由于动力系统的自由度非常高,因此需要新的方法来实现在所定义的标准的意义上的优化。出于这个原因,开发了一种识别器,该识别器能够基于物理专业知识优化整个系统。为此,开发潜在参数,识别器使用这些潜在参数来选择合适的措施,以便基于所定义的评估标准来优化动力系的特性。识别器在合成过程中做出的决定由基于数据的自学习系统支持。因此,以物理连接形式存在的专家知识以及开发经验被转化为算法和程序结构,并用于复杂系统的优化。这两个申请人涵盖内燃机和变速器。因此,在该项目中,电机、电力电子和电池的考虑被简化。然而,如果该项目已经成功完成,将与其他合作伙伴进行进一步的研究项目,以便能够更准确地考虑动力系统的电气集合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Peter Eilts其他文献

Professor Dr.-Ing. Peter Eilts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Peter Eilts', 18)}}的其他基金

Active control of the charge motion by fluidic vortex generators
通过流体涡流发生器主动控制电荷运动
  • 批准号:
    511725940
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

The role of amphiregulin in mediating radiation cystitis in cancer survivors
双调蛋白在介导癌症幸存者放射性膀胱炎中的作用
  • 批准号:
    10636699
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
“Pharmacologic targeting of NR4A1 and NR4A2 to activate glioblastoma treatment response”
– NR4A1 和 NR4A2 的药理学靶向激活胶质母细胞瘤治疗反应 –
  • 批准号:
    10744524
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
UBTF Tandem Duplications in Pediatric Acute Myeloid Leukemia
儿童急性髓性白血病中的 UBTF 串联重复
  • 批准号:
    10801150
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Predicting Outcomes for Uterine Fibroid Embolization by using Deep Learning of Paired MRI Scans
使用配对 MRI 扫描的深度学习预测子宫肌瘤栓塞的结果
  • 批准号:
    10724513
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Anatomical and functional imaging of the conventional outflow pathway
传统流出通道的解剖和功能成像
  • 批准号:
    10752459
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Novel risk stratification score for patients presenting with acute Cerebral Venous Sinus Thrombosis
急性脑静脉窦血栓形成患者的新风险分层评分
  • 批准号:
    10592974
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a tele-mentoring system integrated into an ultra-portable surgical microscope to treat cataract in underserved populations
开发集成到超便携式手术显微镜中的远程指导系统,以治疗服务不足人群的白内障
  • 批准号:
    10602749
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
  • 批准号:
    10589512
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Predicting ECMO NeuroLogICal Injuries using mAchiNe Learning (PELICAN)
使用机器学习预测 ECMO 神经损伤 (PELICAN)
  • 批准号:
    10719312
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Portable Intraoperative MRI for Neurosurgery
用于神经外科的便携式术中 MRI
  • 批准号:
    10728737
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了