Probing nanoscale interactions at the solid-liquid interface via liquid-phase electron microscopy

通过液相电子显微镜探测固液界面的纳米级相互作用

基本信息

项目摘要

The interactions between nanometer-sized objects in liquid environments are key to the functioning of a variety of applications based on colloidal systems, self-assembly processes, diffusive motion at interfaces, for example, in energy-storage materials, and are also of relevance for understanding processes in biology involved in the molecular machinery of life. The true situation at the nanoscale is typically far from symmetric, leading to a high complexity of the potentials so that the basic understanding of the physical rules governing spatial organization at the nanoscale is still incomplete and unexpected/special phenomena continue to be discovered. The overall goal of this project is to study dynamic nanoparticle behavior at the solid-liquid interface. Recent advances in in situ liquid-phase electron microscopy made it possible to directly image nanoparticle movement at the nanoscale. Using this new “viewing window”, we and others have discovered an unexpected exceptional slow movement of gold nanoparticles in liquid, three orders of magnitude slower than predicted on the basis of Brownian motion. The underlying mechanism is possibly of key importance for a correct description of dynamic interactions at the solid-liquid interface. One possible mechanism is that an ordered liquid layer leads to super-viscosity thus slowing down the nanoparticle motions. The research plan entails the following four work packages:WP 1: Establish Liquid STEM of nanoparticle movement. The proposed research will start out by establishing and optimizing the experimental conditions for observing slow movement of different types of nanoparticles in liquid. The specifications of the nanoparticles will be tested and the effect of the density of the electron beam will be evaluated. WP 2: Investigation of Brownian motion. The movement of nanoparticles will be examined for the characteristics of Brownian motion in which the mean square displacement MSD scales linear with time and a scaling law applies with the temperature, and the nanoparticle radius. Several parameters will be varied and translational movements will be analyzed. WP 3: Investigation of other mechanisms of motion. We will also test the presence of other possible mechanisms in which the motion will be driven or partly driven, for example, by a stick-and-slip mechanism or electrostatic hindrance. We will also examine rotational movements.WP 4: Study long-range ordered liquid layer. Finally, we will investigate the anticipated presence of a long-range ordered liquid layer extending out several tens of nanometers from the solid-liquid interface, and exhibiting an exceptionally high viscosity. The interface liquid layer will also be examined with atomic force microscopy as alternative experimental method.
在液体环境中的纳米大小的物体之间的相互作用是关键的各种应用程序的功能基于胶体系统,自组装过程,在界面处的扩散运动,例如,在能量存储材料,也是相关的理解过程中的生物学参与的分子机械的生命。在纳米尺度下的真实情况通常是远离对称的,导致电位的高度复杂性,使得对纳米尺度下控制空间组织的物理规则的基本理解仍然不完整,并且继续发现意想不到的/特殊的现象。该项目的总体目标是研究纳米粒子在固液界面的动态行为。原位液相电子显微镜的最新进展使得直接成像纳米颗粒在纳米尺度上的运动成为可能。使用这种新的“观察窗”,我们和其他人发现了金纳米粒子在液体中意外的异常缓慢运动,比布朗运动的基础上预测的慢三个数量级。潜在的机制可能是一个正确的描述在固-液界面的动态相互作用的关键重要性。一种可能的机制是,有序的液体层导致超粘度,从而减缓纳米颗粒的运动。该研究计划包括以下四个工作包:WP 1:建立纳米颗粒运动的液体STEM。这项研究将从建立和优化实验条件开始,以观察不同类型的纳米粒子在液体中的缓慢运动。将测试纳米颗粒的规格,并评估电子束密度的影响。WP 2:布朗运动的研究。将检查纳米颗粒的运动的布朗运动的特征,其中均方位移MSD与时间成线性比例,并且比例定律与温度和纳米颗粒半径一起应用。将改变几个参数,并分析平移运动。WP 3:其他运动机制的研究。我们还将测试是否存在其他可能的机制,在这些机制中,运动将被驱动或部分驱动,例如,由粘滑机制或静电阻碍。我们还将研究旋转运动。WP 4:研究长程有序液体层。最后,我们将研究预期存在的长程有序液体层延伸出几十纳米的固液界面,并表现出非常高的粘度。界面液体层也将用原子力显微镜作为替代实验方法进行检查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Niels De Jonge其他文献

Professor Dr. Niels De Jonge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Niels De Jonge', 18)}}的其他基金

Liquid-phase 3D electron microscopy for materials science and biology
用于材料科学和生物学的液相 3D 电子显微镜
  • 批准号:
    446340166
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
  • 批准号:
    2339015
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
  • 批准号:
    2415310
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
  • 批准号:
    2337387
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Ultrafast Nanodosimetry - the role of the nanoscale in radiation interactions in matter.
超快纳米剂量测定法 - 纳米尺度在物质辐射相互作用中的作用。
  • 批准号:
    EP/W017245/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Cloaking Anisotropic Capillary Interactions Through Tunable Nanoscale Surface Topography
通过可调纳米级表面形貌隐藏各向异性毛细管相互作用
  • 批准号:
    2232579
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
  • 批准号:
    2227128
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Tip enhanced Terahertz - Raman for investigating graphene-water interactions at the nanoscale
尖端增强太赫兹 - 拉曼用于研究纳米级石墨烯-水相互作用
  • 批准号:
    22KF0394
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Tumor-Targeted Multimodality Nanoscale Coordination Polymers for Chemo-Immunotherapy of Metastatic Colorectal Cancer
用于转移性结直肠癌化疗免疫治疗的肿瘤靶向多模态纳米配位聚合物
  • 批准号:
    10639649
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Therapeutic nanoscale matrimeres
治疗性纳米级基质
  • 批准号:
    10650665
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
  • 批准号:
    10704673
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了