Spectral Elements for Numerical Relativity andGravitational Wave Source Modeling

用于数值相对论和引力波源建模的谱元

基本信息

项目摘要

The first direct detection of gravitational waves in 2015 was a historic breakthrough in gravitational physics. The first observations were associated with the collision of two black holes, while in August 2017 gravitational waves from the merger of two neutron stars were observed for the first time. Neutron star mergers are of great interest in multi-messenger astronomy since they are also accompanied by a wide range of electromagnetic radiation. The interpretation of these observations requires theoretical models, but modeling of binary mergers remains a major challenge.The focus of the proposal is on the development of new numerical methods for numerical general relativity, but with strong ties to the ongoing efforts to provide models for gravitational wave sources. Among the different high-order methods to solve partial differential equations, a particular spectral element method, the discontinuous Galerkin method, has emerged in recent years as a successful general purpose paradigm. To enable the next generation of computer simulations in numerical general relativity, the goal is to develop and implement discontinuous Galerkin methods for general relativity, general relativistic hydrodynamics and magneto hydrodynamics. There are major challenges still ahead, including finding optimal discontinuous Galerkin formulations for the geometry and for general relativistic hydrodynamics, in particular for the treatment of shocks. For high efficiency, the goal is to implement the method with parallel adaptive mesh refinement, involving refinements in space and time.Most of this technology, however, is not available yet for numerical relativity, so the plan is to push the development of a new computational infrastructure. The main challenge in numerical relativity is that we are implementing for a moving target (new equations, new numerical methods, new hardware), so we require professional software engineering, a collaborative infrastructure, and close contact to our science drivers. The goal is to move beyond simple test cases and drive the development of the discontinuous Galerkin method for numerical relativity by full-featured simulations for gravitational wave source modeling. The overarching goal is to provide a theoretical framework for the physics of binary neutron stars and gravitational waves.
2015年首次直接探测到引力波,是引力物理学的历史性突破。第一次观测与两个黑洞的碰撞有关,而在2017年8月,首次观测到了来自两颗中子星合并的引力波。中子星合并在多信使天文学中引起了极大的兴趣,因为它们还伴随着大范围的电磁辐射。对这些观测结果的解释需要理论模型,但二元合并的建模仍然是一个重大挑战。该提案的重点是为数值广义相对论开发新的数值方法,但与为引力波源提供模型的持续努力有很强的联系。在求解偏微分方程组的各种高阶方法中,一种特殊的谱元素方法--间断Galerkin方法是近年来出现的一种成功的通用方法。为了实现数值广义相对论的下一代计算机模拟,目标是开发和实现广义相对论、广义相对论流体力学和磁流体动力学的间断Galerkin方法。仍然存在重大挑战,包括为几何学和一般相对论流体力学,特别是对于激波的处理,寻找最优的间断Galerkin公式。为了提高效率,目标是实现并行自适应网格加密,包括空间和时间上的加密。然而,这种技术中的大部分还不能用于数值相对论,所以计划推动新的计算基础设施的发展。数值相对论的主要挑战是,我们是在实现一个移动的目标(新的方程、新的数值方法、新的硬件),因此我们需要专业的软件工程、协作基础设施以及与我们的科学推动者的密切联系。其目标是超越简单的测试案例,通过对引力波源建模的全功能模拟来推动数值相对论不连续Galerkin方法的发展。首要目标是为双星中子星和引力波的物理学提供一个理论框架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Bernd Brügmann其他文献

Professor Dr. Bernd Brügmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Bernd Brügmann', 18)}}的其他基金

Gravitational Waves from Neutron Star and Black Hole Mergers
中子星和黑洞合并产生的引力波
  • 批准号:
    360292238
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
  • 批准号:
    2309445
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Formation Processes of Heavy Elements in the Early Universe Elucidated by Superconducting Nanoelectronics, Large-Scale Numerical Simulations, and Data Science
通过超导纳米电子学、大规模数值模拟和数据科学阐明早期宇宙中重元素的形成过程
  • 批准号:
    23K20035
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
  • 批准号:
    2309446
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Study on simultaneous assimilation of multiple aerosol elements by integrating remote sensing and numerical modeling
遥感与数值模拟相结合的多种气溶胶成分同时同化研究
  • 批准号:
    22H00562
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Continuous space-time multi-level hp Galerkin-Petrov finite elements for the direct numerical simulation of laser power bed fusion processes
用于激光功率床聚变过程直接数值模拟的连续时空多级 HP Galerkin-Petrov 有限元
  • 批准号:
    441506233
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical and experimental characterization of flows developed around bed-mounted roughness elements: a basis for improved fish passage at road culverts
围绕床安装粗糙度元素开发的流动的数值和实验表征:改善道路涵洞鱼类通道的基础
  • 批准号:
    475060-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Numerical and experimental characterization of flows developed around bed-mounted roughness elements: a basis for improved fish passage at road culverts
围绕床安装粗糙度元素开发的流动的数值和实验表征:改善道路涵洞鱼类通道的基础
  • 批准号:
    475060-2015
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Numerical and experimental characterization of flows developed around bed-mounted roughness elements: a basis for improved fish passage at road culverts
围绕床安装粗糙度元素开发的流动的数值和实验表征:改善道路涵洞鱼类通道的基础
  • 批准号:
    475060-2015
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Construction of Finite Elements Using Generalized Barycentric Coordinates and Its Application for Numerical Solution of Partial Differential Equations
广义重心坐标有限元构造及其在偏微分方程数值解中的应用
  • 批准号:
    1521537
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optimization of Numerical Analysis of Temporary Support Elements for Weak Rock Tunnelling Using a New Mechanistic Model.
使用新的力学模型优化软岩隧道临时支撑元件的数值分析。
  • 批准号:
    443573-2013
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了