Advances in Topological Data Analysis

拓扑数据分析的进展

基本信息

项目摘要

The overarching aim of this project is to extend the foundations of Topological Data Analysis (TDA) in mathematical statistics and applied probability in order to understand the strengths of the TDA methodology and whether it can enable data scientists to make a more informed decision. From the statistical perspective the TDA methodology can be considered as a generalization of cluster analysis which aims at detecting topological structure in data.The first part of the project targets the asymptotic behavior of Betti curves and of functionals obtained from the latter such as persistence landscapes. Establishing pioneering results will lay the groundwork for the second part of the project which is the study of resampling procedures of TDA based objects such as the bootstrap of Betti curves and a further integration of TDA in classical statistical methods such as change point detection.
该项目的总体目标是扩展拓扑数据分析 (TDA) 在数理统计和应用概率方面的基础,以了解 TDA 方法的优势以及它是否能让数据科学家做出更明智的决策。从统计角度来看,TDA 方法可以被视为聚类分析的推广,旨在检测数据中的拓扑结构。该项目的第一部分针对 Betti 曲线的渐近行为以及从后者获得的函数(例如持久性景观)。开创性成果将为该项目的第二部分奠定基础,即研究基于 TDA 的对象的重采样程序(例如 Betti 曲线的引导)以及将 TDA 进一步集成到经典统计方法(例如变化点检测)中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Johannes Theodor Nikolaus Krebs其他文献

Professor Dr. Johannes Theodor Nikolaus Krebs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Johannes Theodor Nikolaus Krebs', 18)}}的其他基金

Dynamic Objects on Random Fields
随机场上的动态对象
  • 批准号:
    375055887
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310356
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
  • 批准号:
    23K03219
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Feature extraction of reaction route map by topological data analysis and its application to reactivity comparison, classification, and prediction
拓扑数据分析反应路线图特征提取及其在反应性比较、分类和预测中的应用
  • 批准号:
    23H01915
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10884028
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: Multiparameter Topological Data Analysis
合作研究:多参数拓扑数据分析
  • 批准号:
    2301361
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310355
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: HNDS-R: Stepping out of flatland: Complex networks, topological data analysis, and the progress of science
合作研究:RUI:HNDS-R:走出平地:复杂网络、拓扑数据分析和科学进步
  • 批准号:
    2318170
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了