Tensor Network Approach for the Two-Dimensional Kondo Lattice
二维近藤晶格的张量网络方法
基本信息
- 批准号:439706636
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Two-dimensional strongly correlated electron systems are one of the most interesting classes of condensed matter theory. Here, strong quantum effects lead to fascinating states of matter such as for example non-Fermi liquid behavior, high-temperature superconductivity and collective order of charge and orbital degrees of freedom. Exotic magnetic phases appears especially if the geometry of the lattice is not compatible with the magnetic order. This effect is called geometrical frustration in technical language.The aim of the present research project is to investigate the magnetic properties of two-dimensional systems with electronic and magnetic degrees of freedom on geometrically frustrated lattice structures. To this end, a recent tensor network ansatz (the infinite projected entangled pair state (iPEPS) approach) will be applied to simulate the system numerically. Thereby, it is possible to incorporate the interactions between the particles accurately. The magnetism of such systems is in particular interesting because the electronic part acts as the mediator between the different magnetic constituents. The incorporation of geometrical frustration can thus lead to an interesting feedback on the electronic system. The computations will be performed for the triangular lattice as well as for a square lattice with additional diagonal links. Both lattice structures are not compatible with antiferromagnetic order and represent therefore frustrated systems. The obtained results will then be combined to gain a general understanding of the impact of geometrical frustration on the magnetism.The used model is the Kondo lattice and is designed for the qualitative description of the magnetic properties of heavy-fermion systems. Already existing experiments for these class of materials show indeed exotic magnetic states for compounds in which the underlying lattice is geometrically frustrated. The compound CePdAl represents a concrete example. The present research project should help to understand the qualitative mechanism for these exotic phases.
二维强相关电子系统是凝聚态物质理论中最有趣的一类。在这里,强量子效应导致物质的迷人状态,例如非费米液体行为、高温超导性、电荷的集体顺序和轨道自由度。当晶格的几何形状与磁序不相容时,奇异磁相就会出现。这种效应在技术语言中被称为几何挫折。本研究项目的目的是研究几何挫折晶格结构上具有电子和磁性自由度的二维系统的磁性。为此,本文将采用一种最新的张量网络分析方法(无限投影纠缠对状态(iPEPS)方法)对系统进行数值模拟。因此,可以精确地结合粒子之间的相互作用。这种系统的磁性特别有趣,因为电子部分充当不同磁性成分之间的介质。因此,几何挫折的结合可以在电子系统上产生有趣的反馈。计算将对三角形晶格以及具有额外对角线连接的方形晶格进行。这两种晶格结构都与反铁磁秩序不相容,因此代表了受挫系统。所得的结果将然后结合起来,以获得对几何挫折对磁性的影响的一般理解。所使用的模型是近藤晶格,是为定性描述重费米子系统的磁性而设计的。对这类材料已有的实验表明,底层晶格在几何上受挫的化合物确实具有奇异的磁性状态。化合物CePdAl就是一个具体的例子。目前的研究项目应该有助于理解这些奇异相的定性机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Matthias Peschke其他文献
Dr. Matthias Peschke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Matthias Peschke', 18)}}的其他基金
Tensor Network Approach for the Two-Dimensional Kondo Lattice
二维近藤晶格的张量网络方法
- 批准号:
497779765 - 财政年份:2021
- 资助金额:
-- - 项目类别:
WBP Position
相似国自然基金
丝氨酸/甘氨酸/一碳代谢网络(SGOC metabolic network)调控炎症性巨噬细胞活化及脓毒症病理发生的机制研究
- 批准号:81930042
- 批准年份:2019
- 资助金额:305 万元
- 项目类别:重点项目
多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
- 批准号:91418205
- 批准年份:2014
- 资助金额:170.0 万元
- 项目类别:重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
- 批准号:60673142
- 批准年份:2006
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
DESIGN: Creating cultural change in small to medium-sized professional societies: a training network approach
设计:在中小型专业团体中创造文化变革:培训网络方法
- 批准号:
2334964 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Evaluating antimicrobial stewardship strategies and capacity building through participatory action research and a network approach in Vietnam
通过越南的参与行动研究和网络方法评估抗菌药物管理策略和能力建设
- 批准号:
MR/Y004701/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Reliable Tensor-Network Fusion Approach to Medical Informatics: Novel Techniques and Benchmarks
可靠的张量网络融合医学信息学方法:新技术和基准
- 批准号:
24K03005 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
- 批准号:
10724756 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A systems-level perspective to addressing health harming legal needs via a joint Health Equity Collective and MLP network approach"
通过健康公平集体和 MLP 网络联合方法,从系统层面视角解决危害健康的法律需求”
- 批准号:
10739710 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A physics-based neural network approach for geophysical inversions
用于地球物理反演的基于物理的神经网络方法
- 批准号:
2309920 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
An Efficient Split In-network Learning Approach for Resource Constrained Wireless Networks
资源受限无线网络的高效分割网内学习方法
- 批准号:
23K11080 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ontology-based Approach to Enhance Security in Network Architecture and in System Design
基于本体的方法增强网络架构和系统设计的安全性
- 批准号:
RGPIN-2020-06859 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Estimating Regional Marine Carbon Uptake Along the Continental Shelf to Nearshore Continuum in the Northeast Pacific Using a High-Resolution Neural Network Approach
使用高分辨率神经网络方法估算东北太平洋沿大陆架到近岸连续体的区域海洋碳吸收量
- 批准号:
576450-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements