Advanced Traffic Control System on Urban Road Network by Neural Network Models
基于神经网络模型的城市路网先进交通控制系统
基本信息
- 批准号:04650473
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using artificial intelligence techniques, we developed a stepwise method to optimize signal timing parameters, such as splits and offsets, on an urban street. The method is separated into two processes, a training process and an optimization process. In the training process, we used two neural network models ; a multilayr model and Kohonen Feature Map model. The former model builds an input-output relationship between the signal timing parameters and the objective variable. The latter model improves the computational efficiency and the estimation precision. In the optimization process, to avoid the entrapment into a local minimum, we used two artificial intelligence methods ; the Cauchy machine and a genetic algorithm. We adjusted the timing parameters so as to minimize the total weighted sum of delay time and stop frequencies. We compared the solutions by both artificial intelligence methods with those by a conventional method and confirmed that they were useful for establishing advanced traffic control systems in the future.Next we described the macroscopic relationships among the traffic variables such as density, traffic flow rate, and space mean speed by a multilayr neural network model which was combined by the kohonen Feature Map technique. Comparison with analytical regression method proved that the neural network approach improves the regression coefficient a great deal and describe well the non-linear and discontinuous behavior among those variables. Such self-organizing relationships serve to simulate the traffic flow precisely and to detect incidents efficiently.
利用人工智能技术,我们开发了一个逐步的方法来优化信号配时参数,如分裂和偏移,在城市街道。该方法分为两个过程,训练过程和优化过程。在训练过程中,我们使用了两个神经网络模型:多层模型和Kohonen特征映射模型。前者建立了信号配时参数与目标变量之间的输入输出关系。后一种模型提高了计算效率和估计精度。在优化过程中,为了避免陷入局部极小值,我们使用了两种人工智能方法:柯西机和遗传算法。我们调整的定时参数,以尽量减少总的加权和的延迟时间和停止频率。然后,通过一个结合Kohonen特征映射技术的多层神经网络模型描述了密度、交通流率和空间平均速度等交通变量之间的宏观关系。与解析回归方法相比,神经网络方法大大提高了回归系数,并能很好地描述变量间的非线性和不连续性。这种自组织关系有助于精确模拟交通流并有效检测事件。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Nakatsuji andT.Kaku: "Development of a Self-Organizing Traffic Control System Using Neural Network Models" TRB Transportation Research Record. No.1324. 137-145 (1991)
T.Nakatsuji 和 T.Kaku:“使用神经网络模型开发自组织交通控制系统”TRB 交通研究记录。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Seki, T.Nakatsuji, S.Seki and T.Kaku: "Application of Neural Network Models to Traffic Control System (Part 3)" Proc.JSCE Hokkaido Branch. Vol.47. 727-732 (1991)
S.Seki、T.Nakatsuji、S.Seki 和 T.Kaku:“神经网络模型在交通控制系统中的应用(第 3 部分)”Proc.JSCE Hokkaido Branch。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nakatsuji, S.Seki and T.Kaku: "Application of Neural Network Models to Traffic Control System" J.Traffic Science. Vol.21 No.1. 5-10 (1991)
T.Nakatsuji、S.Seki 和 T.Kaku:“神经网络模型在交通控制系统中的应用”J.交通科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
中辻隆: "ニューラルネットワークモデルの交通制御システムへの適用について" 交通科学. 21. 5-10 (1991)
Takashi Nakatsuji:“神经网络模型在交通控制系统中的应用”《交通科学》21. 5-10 (1991)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nakatsuji, S.Seki and T.Kaku: "Artificial Intelligence Approach for Optimizing Traffic Signal Timing on Urban Network" Proc.Intern.Confer. Vehicle Navigation & Information Systems. (to be published).
T.Nakatsuji、S.Seki 和 T.Kaku:“优化城市网络交通信号配时的人工智能方法”Proc.Intern.Confer。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAKU Terutoshi其他文献
KAKU Terutoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAKU Terutoshi', 18)}}的其他基金
Development on an image processing system for traffic flow analysis
交通流分析图像处理系统的开发
- 批准号:
01850124 - 财政年份:1989
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
Study on traffic safety in winter and ice control in relation to sutdded tire regulation
冬季交通安全及防冰与增补轮胎调节的关系研究
- 批准号:
63460163 - 财政年份:1988
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
DYNAMIC BEHAVIOR OF A VEHICLE ON A RUTTED ROAD
车辙道路上车辆的动态行为
- 批准号:
60460164 - 财政年份:1985
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
A SYSTEMS APPROACH TO INTEGRATED URBAN NETWORK MANAGEMENT STRATEGIES
城市网络综合管理策略的系统方法
- 批准号:
RGPIN-2014-03923 - 财政年份:2019
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
A SYSTEMS APPROACH TO INTEGRATED URBAN NETWORK MANAGEMENT STRATEGIES
城市网络综合管理策略的系统方法
- 批准号:
RGPIN-2014-03923 - 财政年份:2018
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
A multimodal framework for studying mobility and transportation safety in an urban network
研究城市网络中流动性和交通安全的多模式框架
- 批准号:
RGPIN-2014-06666 - 财政年份:2018
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
A SYSTEMS APPROACH TO INTEGRATED URBAN NETWORK MANAGEMENT STRATEGIES
城市网络综合管理策略的系统方法
- 批准号:
RGPIN-2014-03923 - 财政年份:2017
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Worldwide urban network system in low-carbon society with agglomeration economies
集聚经济的低碳社会全球城市网络体系
- 批准号:
17H02519 - 财政年份:2017
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A multimodal framework for studying mobility and transportation safety in an urban network
研究城市网络中流动性和交通安全的多模式框架
- 批准号:
RGPIN-2014-06666 - 财政年份:2017
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
A multimodal framework for studying mobility and transportation safety in an urban network
研究城市网络中流动性和交通安全的多模式框架
- 批准号:
RGPIN-2014-06666 - 财政年份:2016
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
A systems approach to integrated urban network management strategies
综合城市网络管理策略的系统方法
- 批准号:
461927-2014 - 财政年份:2016
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
A SYSTEMS APPROACH TO INTEGRATED URBAN NETWORK MANAGEMENT STRATEGIES
城市网络综合管理策略的系统方法
- 批准号:
RGPIN-2014-03923 - 财政年份:2016
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
A multimodal framework for studying mobility and transportation safety in an urban network
研究城市网络中流动性和交通安全的多模式框架
- 批准号:
RGPIN-2014-06666 - 财政年份:2015
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




