Cohomogeneity, Curvature, Cohomology

同齐性、曲率、上同调

基本信息

项目摘要

It remains a central task in Riemannian Geometry to understand global implications of locally defined concepts like curvature. Especially the interactions of the local geometries and the topological properties of the underlying manifolds are a worthwhile field of study. This extends to synthetic notions of curvature and singular spaces (as constituted by Alexandrov Geometry).This project is based on three pillars, which vary such questions (in particular, with a view towards sectional curvature and its generalisations): on the one hand we shall investigate Alexandrov spaces (and orbifolds, etc.) which admit actions of compact Lie groups of low cohomogeneity and their cohomological properties; on the other hand different approaches to equivariant K-theory will be used to equip vector bundles over suitable manifolds (like biquotients) with metrics of non-negative sectional curvature up to stabilisation. Finally, tame homotopy theory, in particular, will be applied in order to extend different results and techniques obtained via rational invariants to the setting of finite characteristic.Beside the discussion of curvature properties, further interdependencies of these questions can be found in generalisations and applications of concepts from equivariant cohomology and rational homotopy theory.
理解局部定义的概念如曲率的全局含义仍然是黎曼几何的中心任务。特别是局部几何的相互作用及其下流形的拓扑性质是一个值得研究的领域。这延伸到曲率和奇异空间的综合概念(由亚历山德罗夫几何构成)。这个项目基于三个支柱,这些支柱改变了这些问题(特别是,对截面曲率及其推广的看法):一方面,我们将研究亚历山德罗夫空间(和轨道等),这些空间允许低同质性的紧李群的作用及其上同调性质;另一方面,等变k理论的不同方法将用于在合适的流形(如双商)上装备具有非负截面曲率直至稳定的度量的向量束。最后,特别是驯服同伦理论,将应用于将通过有理不变量获得的不同结果和技术扩展到有限特征的设置。除了曲率性质的讨论,这些问题的进一步相互依赖关系可以在等变上同调和有理同伦理论的概念的推广和应用中找到。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Manuel Amann其他文献

Privatdozent Dr. Manuel Amann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Manuel Amann', 18)}}的其他基金

Lie group actions in Geometry and Topology
几何和拓扑中的李群作用
  • 批准号:
    450239298
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Grants
Kurvature, Kohomology and K-Theory
曲率、上同调和 K 理论
  • 批准号:
    395901807
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Lie group actions in Geometry and Topology
几何和拓扑中的李群作用
  • 批准号:
    324524312
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Positive Curvature and F_0-Spaces
正曲率和 F_0 空间
  • 批准号:
    181716706
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
  • 批准号:
    BB/Y00566X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
  • 批准号:
    23K03212
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
  • 批准号:
    EP/W014807/2
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
  • 批准号:
    2308839
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
  • 批准号:
    2216162
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
  • 批准号:
    2304698
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了