Learning Tonal Representations of Music Signals Using Deep Neural Networks
使用深度神经网络学习音乐信号的音调表示
基本信息
- 批准号:443992185
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the growing impact of technology, musicological research is subject to a fundamental transformation. Digitized data and specialized algorithms enable systematic analyses of large music corpora. Recently, such corpus studies were performed based on audio recordings involving methods from digital signal processing and machine learning. In this context, the tonal analysis of the music signals regarding chords, scales, or keys plays a significant role. Traditional analysis methods rely on signal processing techniques to extract tonal feature representations that indicate the presence of musical pitch classes over time, thus allowing for an explicit semantic interpretation. The objective of this project is to use deep neural networks for learning tonal representations, which are interpretable, robust, and invariant regarding timbre, instrumentation, and acoustic conditions. The project builds on complex scenarios of classical music where time-aligned scores and multiple performances of the pieces can be used for training, validating, and testing the algorithms. From a technical perspective, this project investigates approaches for learning pitch-class, multi-pitch, and salience representations. Among others, sequence learning techniques that can handle weakly-aligned annotations and U-net architectures that are inspired by hierarchical musical structures will be explored. Applying the learned representations to complex music scenarios aims for developing robust tonal analysis methods by exploiting the potential of novel deep-learning algorithms, thus paving the way towards a new level of computational music research.
随着技术的影响日益扩大,音乐学研究正在发生根本性的转变。数字化数据和专门的算法使大型音乐语料库的系统分析成为可能。最近,这样的语料库研究是基于音频记录进行的,涉及数字信号处理和机器学习的方法。在这种情况下,关于和弦、音阶或键的音乐信号的音调分析起着重要的作用。传统的分析方法依赖于信号处理技术来提取音调特征表示,其指示随着时间的推移音乐音高类的存在,从而允许明确的语义解释。该项目的目标是使用深度神经网络来学习音调表示,这些表示在音色,乐器和声学条件方面是可解释的,鲁棒的和不变的。该项目建立在古典音乐的复杂场景上,其中时间对齐的乐谱和作品的多次表演可用于训练,验证和测试算法。从技术的角度来看,这个项目研究学习音高类,多音高,和显着性表示的方法。除此之外,还将探索可以处理弱对齐注释的序列学习技术和受分层音乐结构启发的U型网络架构。将学习到的表示应用于复杂的音乐场景,旨在通过利用新型深度学习算法的潜力来开发强大的音调分析方法,从而为计算音乐研究的新水平铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Christof Weiß其他文献
Professor Dr.-Ing. Christof Weiß的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Christof Weiß', 18)}}的其他基金
Computational Analysis of Music Audio Recordings: A Cross-Version Approach
音乐录音的计算分析:跨版本方法
- 批准号:
531250483 - 财政年份:
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
相似海外基金
Utilization of Analysis on Eyeball-movement and Eye-blink in Spatial, Tonal, and Numerical Auditory Cognition Training
眼球运动和眨眼分析在空间、音调和数字听觉认知训练中的应用
- 批准号:
22K02934 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Beyond Segments: Towards a lexical model for tonal bilinguals
超越语段:走向声调双语者的词汇模型
- 批准号:
DP210102789 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Projects
Modeling of psychological response to tonal noise in consideration of overall frequency spectrum
考虑整体频谱的音调噪声心理反应建模
- 批准号:
21K14299 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Experiments and models of speech recognition across tonal and non-tonal language systems (EMSATON)
跨声调和非声调语言系统的语音识别实验和模型(EMSATON)
- 批准号:
415895050 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Simplifying the complex: Developing a new method for memorising post-tonal piano music
简化复杂:开发一种记忆后调钢琴音乐的新方法
- 批准号:
2286185 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
The Harmonic Syntax of Post-Tonal Music: A Digital Approach
后调性音乐的和声句法:数字方法
- 批准号:
2251240 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Documentation of discourse and cultural activities to advance scientific knowledge of an endangered tonal language
记录话语和文化活动,以增进对濒危声调语言的科学认识
- 批准号:
1761421 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Phonological description of tonal change observed in Japanese functional morphemes and elucidation of the growth mechanism of the tonal neutralization
日语功能语素声调变化的音系描述及声调中和的增长机制的阐明
- 批准号:
17K02673 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A reference grammar and tonal documentation of Seenku, an endangered Mande language
Seenku(一种濒临灭绝的曼德语)的参考语法和声调文档
- 批准号:
1664335 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Tonal Aspects of Language Symposium: Bridging Linguistic and Psycholinguistic Perspectives on Tone
语言研讨会的语气方面:桥接语言学和心理语言学对语气的观点
- 批准号:
1566053 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant