BigPlantSens - Assessing the Synergies of Big Data and Deep Learning for the Remote Sensing of Plant Species
BigPlantSens - 评估大数据和深度学习在植物物种遥感方面的协同作用
基本信息
- 批准号:444524904
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Various tasks - including research, nature conservation, and economic activities such as forestry, agriculture, or ecosystem service assessments - require accurate information on the geographical distribution of plant species. Due to novel very high spatial resolution satellite missions and Unmanned Aerial Vehicles (UAV), there is a growing availability of Earth observation data revealing both high spatial and temporal detail on vegetation patterns. Consequently, efficient methods are needed to harness this growing source of information for vegetation analysis.In the field of remote sensing of vegetation, Deep Learning methods such as Convolutional Neural Networks (CNN) are currently revolutionizing possibilities for pattern and object recognition. Thus, it is expected that, in tandem with advances in high-resolution sensor technology, CNN will enlarge our capability to determine spatially explicit vegetation patterns. However, CNN commonly require ample reference observations to learn the pivotal image features. A big data approach may provide these reference observations required for training the CNN models. Various initiatives (e.g., CLEF; GBIF, Pl@ntNet) provide a vast amount of labelled image data on plant species, i.e., photographs together with species names. As a result of the constant efforts in the area of Open Data, such image datasets are freely accessible and continue to grow. However, it remains unclear if CNN models trained with such image datasets are directly applicable to very-high-resolution Earth observation data in terms of their spatial resolution, quality, and viewing geometries. Accordingly, in the proposed project, we aim to assess the synergies of big data with high spatial resolution Earth observation data for fully automated vegetation mapping. The proposed approach uses big data in terms of freely available imagery tagged with species names to train CNN models. The trained models are then applied to high-resolution Earth observation data to reveal the spatial distribution of the target species. Thereby, we seek to identify which characteristics of the images used for training affect mapping accuracy (e.g., acquisition geometry, image quality), and we will develop an algorithm for filtering the image datasets according to these characteristics before training. Specifically, our research questions are:1) How accurately can the spatial distribution of different plant species be identified using the proposed big data approach combined with deep learning and very-high-resolution remote sensing data?2) What are the critical factors determining the value of Big Data-based image datasets for CNN training, and can these be efficiently filtered using deep learning?3) How does the spatial resolution of the Earth observation data limit the plant species identification?
各种任务--包括研究、自然保护和林业、农业或生态系统服务评估等经济活动--都需要关于植物物种地理分布的准确信息。由于新的非常高的空间分辨率的卫星任务和无人驾驶航空器(UAV),有越来越多的地球观测数据的可用性揭示了高的空间和时间细节的植被模式。在植被遥感领域,卷积神经网络(CNN)等深度学习方法目前正在彻底改变模式和对象识别的可能性。因此,预计随着高分辨率传感器技术的进步,CNN将扩大我们确定空间清晰植被模式的能力。然而,CNN通常需要大量的参考观察来学习关键的图像特征。大数据方法可以提供训练CNN模型所需的这些参考观测。各种倡议(例如,CLEF; GBIF,Pl@ntNet)提供关于植物物种的大量标记图像数据,即,照片和物种名称。由于在开放数据领域的不断努力,这些图像数据集可以免费获取,并继续增长。然而,目前尚不清楚使用此类图像数据集训练的CNN模型是否直接适用于极高分辨率的地球观测数据,包括空间分辨率,质量和查看几何形状。因此,在拟议的项目中,我们的目标是评估大数据与高空间分辨率地球观测数据在全自动植被制图方面的协同作用。所提出的方法使用大数据,即标记有物种名称的免费图像来训练CNN模型。然后将训练好的模型应用于高分辨率地球观测数据,以揭示目标物种的空间分布。因此,我们试图识别用于训练的图像的哪些特征影响映射准确性(例如,采集几何结构、图像质量),并且我们将在训练之前根据这些特征开发用于过滤图像数据集的算法。具体来说,我们的研究问题是:1)如何准确地识别不同植物物种的空间分布,使用所提出的大数据方法结合深度学习和超高分辨率遥感数据?2)哪些关键因素决定了基于大数据的图像数据集对于CNN训练的价值,这些数据集可以使用深度学习进行有效过滤?3)地球观测数据的空间分辨率如何限制植物物种识别?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Teja Kattenborn其他文献
Dr. Teja Kattenborn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Teja Kattenborn', 18)}}的其他基金
PANOPS – Revealing Earth´s plant functional diversity with citizen science
PANOPS – 通过公民科学揭示地球植物的功能多样性
- 批准号:
504978936 - 财政年份:
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
相似海外基金
Marine Soundscapes And EDNA For Assessing Biodiversity And Functioning Of Re-establishing European Flat Oyster Reefs, Ostrea Edulis
海洋声景和 EDNA 用于评估生物多样性和重建欧洲平牡蛎礁(Ostrea Edulis)的功能
- 批准号:
2727996 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Studentship
Contaminants of emerging concern: An integrated approach for assessing impacts on the marine environment. Acronym: CONTRAST
新出现的污染物:评估对海洋环境影响的综合方法。
- 批准号:
10093180 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Doctoral Dissertation Research: Assessing the chewing function of the hyoid bone and the suprahyoid muscles in primates
博士论文研究:评估灵长类动物舌骨和舌骨上肌的咀嚼功能
- 批准号:
2337428 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Assessing the causes of the pyrosome invasion and persistence in the California Current Ecosystem
合作研究:评估加州海流生态系统中火体入侵和持续存在的原因
- 批准号:
2329559 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Assessing the net climate impact of tropical peatland restoration: the role of methane
博士后奖学金:EAR-PF:评估热带泥炭地恢复对气候的净影响:甲烷的作用
- 批准号:
2305578 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
NSF PRFB FY 2023: Assessing morphological, behavioral, and genetic impacts of methylmercury on spiders.
NSF PRFB 2023 财年:评估甲基汞对蜘蛛的形态、行为和遗传影响。
- 批准号:
2305949 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
Doctoral Dissertation Research: Assessing the physiological consequences of diet and environment for gorillas in zoological settings
博士论文研究:评估动物环境中大猩猩饮食和环境的生理后果
- 批准号:
2341433 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
NESP MaC Project 4.2 – Assessing dugong distribution and abundance in the southern Gulf of Carpentaria 2024-2026 (CDU & JCU)
NESP MaC 项目 4.2 — 评估 2024-2026 年卡奔塔利亚湾南部儒艮分布和丰度 (CDU
- 批准号:
global : 718c5de5-6731-4c6e-88e2-8e6afb5d52ad - 财政年份:2024
- 资助金额:
-- - 项目类别:














{{item.name}}会员




