Preclinical computational simulation of fracture healing in children

儿童骨折愈合的临床前计算模拟

基本信息

项目摘要

Computational simulations can be used in (pediatric) orthopedics to model functional adaption of biological structures and bone metabolism. Finite element method can calculate numerically mechanical stresses. The simulations are able to model secondary fracture healing with callus development, bone remodeling, and growth. Existing algorithms consider cell differentiation, production and removal of extracellular matrix, vascularisation, cell migration and proliferation, dynamic loads, growth factors, patient specific models, dislocated fractures, and virtual implantation. These simulations can predict healing outcome of treatment options and be used to optimize implants and treatments: Once simulations are validated by high accordance of simulation results with patient cases or animal studies these simulations can be used to test and improve implants and treatments cost- and time-effective previous to clinical use or animal testing. While there are many simulations of fracture healing in adults, at the moment no simulation of fracture healing in children is available. Although pediatric fracture healing proceeds in the same stages as in adults and healing is often fast and without complication, the specific growth situation needs to be addressed: Malalignment can be adjusted easier, but also occur due to overgrowth or growth arrest. Another complication is secondary fracture during healing. Infrequently used implants for pediatric osteosynthesis exacerbate implant improvement by statistical means. Virtual strength measurements during healing simulations can help to reduce refractures and provide needs for implant design. The finite element software calculates mechanical stresses due to external forces and hormone concentration by diffusion-reaction models. The algorithm defines the resulting cell processes. By this morphology, external loads and muscle forces, and endocrine characteristics of a patient can be incorporated. For this purpose algorithms for growth, remodeling, and healing simulation are combined. A shaft and an epiphyseal fracture are simulated and compared to clinical healing outcome.
计算模拟可用于(儿科)骨科,以模拟生物结构和骨代谢的功能适应。有限元法可以数值计算机械应力。模拟能够模拟具有骨痂发育、骨重塑和生长的继发性骨折愈合。现有算法考虑细胞分化、细胞外基质的产生和去除、血管形成、细胞迁移和增殖、动态载荷、生长因子、患者特定模型、脱位骨折和虚拟植入。这些模拟可以预测治疗方案的愈合结果,并用于优化植入物和治疗:一旦模拟通过模拟结果与患者病例或动物研究的高度一致性进行验证,这些模拟可用于在临床使用或动物试验之前测试和改善植入物和治疗的成本和时间效益。虽然有许多成人骨折愈合的模拟,但目前还没有儿童骨折愈合的模拟。虽然儿科骨折愈合的进展与成人相同,愈合通常很快,没有并发症,但需要解决特定的生长情况:对线不良可以更容易调整,但也可能由于过度生长或生长停滞而发生。另一个并发症是愈合过程中的继发性骨折。通过统计学方法,儿科骨接合术中不常使用的植入物加剧了植入物的改善。愈合模拟过程中的虚拟强度测量有助于减少并发症,并为植入物设计提供需求。有限元软件通过扩散反应模型计算外力和激素浓度引起的机械应力。该算法定义了产生的细胞过程。通过这种形态,可以结合患者的外部负荷和肌肉力以及内分泌特征。为此,结合了用于生长、重塑和愈合模拟的算法。模拟骨干和骨骺骨折,并与临床愈合结果进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Ulrich Witzel其他文献

Professor Dr.-Ing. Ulrich Witzel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Ulrich Witzel', 18)}}的其他基金

The evolution of skull shape and function in Sauropodomorpha: Insights from finite elements structure synthesis and landmark analysis
蜥脚类动物头骨形状和功能的演化:有限元结构合成和标志性分析的见解
  • 批准号:
    37087379
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

International Collaboration Towards Net Zero Computational Modelling and Simulation (CONTINENTS)
实现净零计算建模和仿真的国际合作(大陆)
  • 批准号:
    EP/Z531170/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Develop a Hybrid Adaptive Particle-Field Simulation Method for Solutions of Macromolecules and a New Computational Chemistry Course for Lower-Division Undergraduates
职业:开发用于大分子解决方案的混合自适应粒子场模拟方法以及低年级本科生的新计算化学课程
  • 批准号:
    2337602
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Empowering Augmented Mobility Of The Aging Population Using Computational Musculoskeletal Simulation
使用计算肌肉骨骼模拟增强老龄化人口的活动能力
  • 批准号:
    ES/Y008030/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Joint Estimate Diffusion Imaging (JEDI) for improved Tissue Characterization and Neural Connectivity in Aging and Alzheimer's Disease
联合估计扩散成像 (JEDI) 可改善衰老和阿尔茨海默病的组织表征和神经连接
  • 批准号:
    10662911
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CRCNS: Acetylcholine and state-dependent neural network reorganization
CRCNS:乙酰胆碱和状态依赖的神经网络重组
  • 批准号:
    10830050
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Probing Amyloid Fibril Self-Assembly with Network Hamiltonian Simulations in Explicit Space
用显式空间中的网络哈密顿模拟探测淀粉样蛋白原纤维的自组装
  • 批准号:
    10715891
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
  • 批准号:
    10785755
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了