Research on eye contact recognition with active camera
主动摄像头眼神接触识别研究
基本信息
- 批准号:16200014
- 负责人:
- 金额:$ 30.78万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we address "eye contact recognition problem", i.e., estimating a human gaze direction from a single image. This problem can be positioned in the field of Computer Vision, which was initiated by imitating human visual functions, because this problem can also be regarded as an imitation of a visual function that people are sensitive to those who watching them.The possible approaches for realizing this peculiar function are classified into two types : 1) gaze recognition based on the iris contour shape and 2) gaze recognition based on the positional arrangement of pupils and other face organs. We investigated and compared both approaches. According to the first approach, we developed a gaze estimation algorithm based on ellipse fitting to the iris contours using an eye-model. Of course, each person has different eye ball diameter and distance between eye balls. These personal parameters can be estimated from short image sequence less than 5 seconds. After that, precise e … More ye direction estimation can be performed within NTSC video interval (33[ms]). On the other hand, we developed a gaze estimation algorithm according to the second approach. For this algorithm, we developed a learning algorithm for non-linear mapping named "PaLM-tree". By using this algorithm, we can estimate the viewing direction from the positional arrangement of face organs, to visual direction, it requires large training data and the accuracy of the vertical direction is less than the first one.Also, we investigated problems of 3) active visual tracking for capturing high quality eye image of moving objective person and 4) recognition method for eye contact recognition. For the third problem, we developed a visual tracking algorithm adaptive to color change named "k-means tracker". This algorithm is robust against the color shift and shape deformation of the object. And we extend it to "reliability based k-means tracker" for further improvement of the robustness. We also developed another very fast tracking algorithm based on the distinctiveness of target colors. By using these algorithms, high performance active stereo tracking system have been constructed. For the fourth problem, we developed an accelerated algorithm of nearest neighbor classification named "k-d decision tree". Currently, this is the world fastest nearest neighbor classifier. Less
在这项研究中,我们解决了“目光接触识别问题”,即从单个图像中估计人类的凝视方向。这个问题可以定位在计算机视觉领域,它是从模仿人类的视觉功能开始的,因为这个问题也可以看作是对人们对观看者敏感的视觉功能的模仿。实现这一特殊功能的可能方法分为两种:1)基于虹膜轮廓形状的凝视识别和2)基于瞳孔和其他面部器官的位置排列的凝视识别。我们调查并比较了这两种方法。在第一种方法的基础上,提出了一种基于椭圆拟合虹膜轮廓的注视估计算法。当然,每个人的眼球直径和眼球之间的距离是不同的。这些个人参数可以从不到5秒的短图像序列中估计出来。在NTSC视频间隔(33[ms])内可以进行更精确的方向估计。另一方面,我们根据第二种方法开发了一种注视估计算法。针对该算法,我们开发了一种非线性映射的学习算法“PaLM-tree”。使用该算法,我们可以从人脸器官的位置排列,到视觉方向估计观看方向,需要大量的训练数据,并且垂直方向的精度低于第一种方法。此外,我们还研究了3)捕捉高质量运动目标人眼图像的主动视觉跟踪问题和4)眼神接触识别的识别方法问题。针对第三个问题,我们开发了一种自适应颜色变化的视觉跟踪算法“k-means tracker”。该算法对物体的颜色偏移和形状变形具有较强的鲁棒性。并将其扩展为“基于可靠性的k-means跟踪器”,进一步提高了鲁棒性。我们还开发了另一种基于目标颜色独特性的快速跟踪算法。利用这些算法,构建了高性能的主动立体跟踪系统。对于第四个问题,我们开发了一种加速的最近邻分类算法“k-d决策树”。目前,这是世界上最快的最近邻分类器。少
项目成果
期刊论文数量(93)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Network Augmented Multisensor Association-Condensaion : Condensationの自然な拡張による3次元空間内での人物頭部の実時間追跡
网络增强多传感器关联-Condensaion:通过自然延伸的凝结在 3D 空间中实时跟踪人体头部
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:松元郁佑;加藤丈和;和田俊和
- 通讯作者:和田俊和
Visual Direction Estimation from a Monocular Image
- DOI:10.1093/ietisy/e88-d.10.2277
- 发表时间:2005-10
- 期刊:
- 影响因子:0
- 作者:Haiyuan Wu;Qian Chen;T. Wada
- 通讯作者:Haiyuan Wu;Qian Chen;T. Wada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WADA Toshikazu其他文献
WADA Toshikazu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WADA Toshikazu', 18)}}的其他基金
Example based Anomaly Sign Detection
基于示例的异常标志检测
- 批准号:
24300072 - 财政年份:2012
- 资助金额:
$ 30.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Environment Understanding using Robot Body
使用机器人本体了解环境
- 批准号:
12308016 - 财政年份:2000
- 资助金额:
$ 30.78万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Wide Area Visual Surveillance Using Fixed Viewpoint Camera
使用固定视点摄像机进行广域视觉监控
- 批准号:
08680401 - 财政年份:1996
- 资助金额:
$ 30.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




