Characterizing the complexity of physical quantum problems with oracle complexity classes

用预言复杂度类表征物理量子问题的复杂性

基本信息

项目摘要

A primary motivation behind quantum computation is to efficiently compute properties of quantum systems in Nature. Yet, using tools from computer science, one can prove (up to standard conjectures) that certain properties of Nature simply cannot be computed efficiently by either a classical nor quantum computer. In recent years, the set of such provably "difficult-to-compute" quantum properties has grown, culminating in the study of the Approximate Simulation (APX-SIM) problem, which asks: "How hard is it to simulate a measurement of a quantum system which is cooled to near absolute zero"? This low temperature regime is of particular interest, as it is where phenomena such as superconductivity and superfluidity manifest themselves. Understanding these phenomena, in turn, has potential applications to important areas such as materials design.The study of APX-SIM introduced a relatively new tool to the field of quantum complexity theory, that of "oracle complexity classes". This proposal aims to explore further uses of such oracle complexity classes in the characterization of the difficulty of physically motivated quantum problems. In particular, we ask:1) Can oracle complexity classes yield a tighter upper bound on one of the central complexity classes in quantum information, Quantum Merlin Arthur (QMA)?2) Can oracle complexity classes allow us to prove that computing low temperature properties involving entanglement, energy barriers, and bosonic/fermionic systems are also "difficult"?3) Can oracle complexity classes allow us to more precisely prove that some low temperature quantum systems are, in a formal sense, more "powerful" than others?A successful completion of these objectives will yield deep new insights into the fine line between which properties of Nature can, or cannot, be computed efficiently.
量子计算背后的主要动机是有效地计算自然界中量子系统的性质。然而,使用计算机科学的工具,人们可以证明(达到标准的假设),自然界的某些性质根本无法通过经典计算机或量子计算机有效地计算。近年来,这种可证明的“难以计算”的量子性质的集合已经增长,最终在近似模拟(APX-SIM)问题的研究中达到高潮,该问题问道:“模拟冷却到接近绝对零度的量子系统的测量有多难?”这种低温状态特别令人感兴趣,因为它是超导性和超流性等现象的表现。APX-SIM的研究为量子复杂性理论领域引入了一个相对较新的工具,即“预言复杂性类”。该提案旨在探索此类Oracle复杂性类在表征物理驱动的量子问题的难度方面的进一步用途。特别是,我们问:1)甲骨文复杂性类可以产生一个更严格的上限的中央复杂性类之一,在量子信息,量子梅林亚瑟(QMA)?2)Oracle复杂性类能让我们证明计算涉及纠缠、能垒和玻色子/费米子系统的低温性质也是“困难的”吗?3)甲骨文复杂性类能让我们更精确地证明某些低温量子系统在形式意义上比其他系统更“强大”吗?这些目标的成功完成将产生深刻的新见解之间的细线自然属性可以或不能有效地计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sevag Gharibian, Ph.D.其他文献

Professor Dr. Sevag Gharibian, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sevag Gharibian, Ph.D.', 18)}}的其他基金

The Quantum Satisfiability Problem - Algorithms and Complexity Theoretic Hardness
量子可满足性问题 - 算法和复杂性理论硬度
  • 批准号:
    432788384
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Using movement complexity in Japanese macaques to measure the behavioural signature of physical condition and environmental change
利用日本猕猴的运动复杂性来测量身体状况和环境变化的行为特征
  • 批准号:
    559708-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Using movement complexity in Japanese macaques to measure the behavioural signature of physical condition and environmental change
利用日本猕猴的运动复杂性来测量身体状况和环境变化的行为特征
  • 批准号:
    559708-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Deciphering the role of low complexity domains in dual specificity kinase function
解读低复杂性结构域在双特异性激酶功能中的作用
  • 批准号:
    10217666
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
The Complexity of Informal Caregiving for Alzheimer's Disease and Related Dementias in Rural South Africa
南非农村地区阿尔茨海默病和相关痴呆症的非正式护理的复杂性
  • 批准号:
    10022286
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Identifying nicotine withdrawal mechanisms hidden within habenular complexity
识别隐藏在缰核复杂性中的尼古丁戒断机制
  • 批准号:
    9699459
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Inferential methods for functional data from wearable devices
可穿戴设备功能数据的推理方法
  • 批准号:
    10605202
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Inferential methods for functional data from wearable devices
可穿戴设备功能数据的推理方法
  • 批准号:
    10394221
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Using fractal analysis to determine if physical impairment in Japanese macaques reduces behavioural movement complexity
使用分形分析确定日本猕猴的身体损伤是否会降低行为运动的复杂性
  • 批准号:
    533594-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Using fractal analysis to determine if physical impairment in Japanese macaques reduces behavioural movement complexity
使用分形分析确定日本猕猴的身体损伤是否会降低行为运动的复杂性
  • 批准号:
    528499-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Complexity-oriented design of cyber-physical systems
面向复杂性的信息物理系统设计
  • 批准号:
    399904766
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了