Flow transition scenarios of dilute bubbly liquids
稀气泡液体的流动转变场景
基本信息
- 批准号:21K20416
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Research Activity Start-up
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-08-30 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
本課題では二相流体力学的な「摂理」(時空多重性・非定常性・不規則性)を真正面から扱う.これまでの研究成果より希薄分散混相流に生じる乱流遷移シナリオの解読には,渦と分散体の相互干渉の理解と混相流れの遷移経路の特定が重要であることが分かった.自身の研究成果(Nakamura et al., PRE, 2020; Nakamura et al., JFM Rapids, 2021)を足がかりとして,希薄分散混相流体の遷移経路を明らかにする.今年度は流れ場としてレイリー・ベナール対流(以下RB対流)およびテイラー・クエット流(以下,TC流)を扱い,微細気泡および固体微粒子を含むRB対流について,現象を記述する支配方程式(分散相および連続相それぞれの質量保存則,運動量保存則,エネルギー方程式),9つの無次元数をそれぞれ提案した.現象を特徴付ける無次元数を特定するために,これら9つの無次元数を組み合わせて新たな無次元数を作り,基本場を算出して分類した.その結果,新たな3つの無次元数で基本場が分類されることが分かった.この支配方程式を無限小撹乱に対する線形安定性理論の枠組みで解くことにより,流れが撹乱に対して不安定化する臨界条件,およびそこでの臨界固有関数を決定することが出来た.現在,これら線形安定性解析の成果を査読付き学術雑誌論文投稿に向けて準備中である.その後の課題は,この臨界固有関数を初期近似解として経路追跡法により非線形分岐解を決定して,流れの非線形発展における分散体の役割を明らかにすることである.
In this paper, the theory of two-phase hydrodynamics (time-space multiplicity non-regularity) is very important. The results of the research on the dynamics of two-phase hydrodynamics show that the dispersion miscible flow leads to turbulent flow. The dispersion interacts with each other to understand the miscible flow, the path shift, the specific importance, the separation, the self-research results (Nakamura et al., PRE, 2020) Nakamura et al., JFM Rapids, 2021) the dispersion of the miscible fluid is expected to lead to a clear flow. This year, the flow rate (the following RB flow), the flow (the following TC flow), the microbubble (the RB flow), the microbubble (the RB flow), the flow (the following flow), the flow (below, the flow). For example, you can write down the governing equation, which means that you can save a lot of data, and that you can save a lot of data. 9 years old, you have no number of dimensions, and you have no number of dimensions. for example, you don't have a number of dimensions, and you don't have a number of dimensions. for example, you don't have a number of dimensions, and you don't have a number of dimensions. The basic classification is calculated. The results show that the new data is dimensionless, the basic classification is different, and the governing equation is infinitesible. the governing equation has no limit to the size of the equation, the theory of stability is based on the theory of stability, the flow is in a state of instability, and the boundary is inherently determined by the number of variables. On the basis of the analysis of the shape stability of the scientific journal, the results have been submitted to the academic journal in preparation for the following problems, the initial approximate solution of the inherent number of the system, the solution of the non-linear bifurcation solution, the determination of the non-linear bifurcation solution, the non-linear distribution system, the dispersion system, the distribution system, the dispersion system and the dispersion system.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
中村 幸太郎其他文献
中村 幸太郎的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('中村 幸太郎', 18)}}的其他基金
Identification of neuronal circuits controlled by the inflammation and elucidation of its molecular mechanism
炎症控制的神经元回路的鉴定及其分子机制的阐明
- 批准号:
20J21472 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation and theoretical base construction for turbulent flow transition with dilute microbubble dispersion
稀微气泡分散湍流转变的阐明及理论基础构建
- 批准号:
19J10648 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似海外基金
形状可変性アクティブ流体工学の学理構築と環境適応型ソフトロボティクスへの実践
变形主动流体工程理论建立及其在环境自适应软机器人中的实现
- 批准号:
23K26393 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
流体工学的解析を取り入れた大動脈弁形成術・右室流出路再建術のin vitro実験
结合流体工程分析的主动脉瓣成形术和右心室流出道重建的体外实验
- 批准号:
24K19416 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
形状可変性アクティブ流体工学の学理構築と環境適応型ソフトロボティクスへの実践
变形主动流体工程理论建立及其在环境自适应软机器人中的实现
- 批准号:
23H01700 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Growth Mechanisms in CVD/ALD Processes by a Fusion of Molecular Fluid Engineering and Reaction Engineering
融合分子流体工程和反应工程分析 CVD/ALD 工艺中的生长机制
- 批准号:
20J20915 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Fluid engineering approach for dental drill design
用于牙钻设计的流体工程方法
- 批准号:
19K10148 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of respiratory exposure mechanism targeting rat, monkey, human based on the environmental fluid engineering technique
基于环境流体工程技术的大鼠、猴、人呼吸暴露机制研究
- 批准号:
18K13880 - 财政年份:2018
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Centre in Advanced Fluid Engineering for Digital Manufacturing (CAFE4DM)
数字化制造先进流体工程中心 (CAFE4DM)
- 批准号:
EP/R00482X/1 - 财政年份:2017
- 资助金额:
$ 2万 - 项目类别:
Research Grant
Foundation building for sports fluid engineering and development of standard fluid data
运动液体工程基础建设及标准液体数据开发
- 批准号:
24240084 - 财政年份:2012
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
山地域の水・物質移動過程に関する数値流体工学的研究
山区水传质过程计算流体工程研究
- 批准号:
09J03902 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Creation of fluid engineering in extended-nano space
在扩展纳米空间中创建流体工程
- 批准号:
21000007 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Specially Promoted Research