Computational Support for Learning Argumentative Writing in Digital School Education

数字学校教育中学习议论文写作的计算支持

基本信息

项目摘要

In this project, we aim to study how to support German school students in learning to write argumentative texts through computational methods that provide developmental feedback. These methods will assess and explain which aspects of a text are good, which need to be improved, and how to improve them, adapted to the student’s learning stage. We seek to provide answers to three main research questions: (1) How to robustly mine the structure of German argumentative learner texts? (2) How to effectively assess the learning stage of a student based on a given argumentative text? (3) How to provide developmental feedback to an argumentative text adapted to the learning stage? The motivation behind is that digital technology is more and more transforming our culture and forms of learning. While vigorous efforts are made to implement digital technologies in school education, software for teaching German is so far limited to simple multiple-choice tests and the like, not providing any formative, let alone individualized, feedback. Argumentative writing is one the most standard tasks in school education, taught incrementally at different ages. Due to its importance across school subjects, it defines a suitable starting point for more “intelligent” computational learning support. We focus on the structural composition of argumentative texts, leaving their content and its relation to underlying sources to future work.Due to several studies, the integration of counter-argumentation is an enormous challenge in the developmental knowledge acquisition for argumentative writing. To support this computationally, we will develop analysis methods that mine the claims, reasons, and counter-considerations of arguments from German learner texts and that assess the learning stage of the learner on this basis. The output then serves as input to methods that synthesize learning stage-specific feedback, e.g., pointing a student to missing counter-considerations and potential positions for including it. The project has four core objectives: (1) We aim to establish a German corpus of about 1500 manually annotated learner texts from three age groups. (2) On this basis, we develop computational methods for mining and assessing arguments. (3) We acquire feedback on learner texts and evaluate this feedback. (4) We develop methods to synthesize learning stage-specific feedback. The empirical evaluation combines didactic knowledge with the developed methods, in order to qualitatively explore the capabilities and limitations of providing developmental feedback, both in technical and in social regards.
在这个项目中,我们的目标是研究如何通过提供发展反馈的计算方法来支持德国学生学习写议论文。这些方法将评估和解释文本的哪些方面是好的,哪些需要改进,以及如何改进,以适应学生的学习阶段。我们试图提供三个主要研究问题的答案:(1)如何可靠地挖掘德语辩论学习者文本的结构?(2)如何根据给定的议论文有效地评估学生的学习阶段?(3)如何为适应学习阶段的议论文篇提供发展性反馈?背后的动机是,数字技术正在越来越多地改变我们的文化和学习形式。虽然在学校教育中大力推行数字技术,但迄今为止,用于德语教学的软件仅限于简单的多项选择题等,没有提供任何形成性的反馈,更不用说个性化的反馈了。议论文写作是学校教育中最标准的任务之一,在不同年龄段循序渐进地教授。由于它在学校学科中的重要性,它为更“智能”的计算学习支持定义了一个合适的起点。我们专注于论证文本的结构组成,将其内容及其与潜在来源的关系留给未来的工作。多项研究表明,在议论文写作的发展过程中,反论证的整合是一个巨大的挑战。为了在计算上支持这一点,我们将开发分析方法,从德语学习者文本中挖掘论点的主张、原因和反考虑,并在此基础上评估学习者的学习阶段。然后,输出作为综合学习阶段特定反馈的方法的输入,例如,指出学生缺少的反考虑因素和包括它的潜在位置。该项目有四个核心目标:(1)我们的目标是建立一个德语语料库,其中包括来自三个年龄组的约1500个手动注释的学习者文本。(2)在此基础上,我们开发了挖掘和评估论证的计算方法。(3)获取对学习者文本的反馈,并对反馈进行评价。(4)我们开发了综合学习阶段反馈的方法。实证评估将教学知识与已开发的方法相结合,以便定性地探索在技术和社会方面提供发展反馈的能力和局限性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Sara Rezat其他文献

Professorin Dr. Sara Rezat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
  • 批准号:
    21002080
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
  • 批准号:
    70501008
  • 批准年份:
    2005
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The development and evaluation of a digital role playing game (RPG) as a tool to support foreign language learning
作为支持外语学习工具的数字角色扮演游戏(RPG)的开发和评估
  • 批准号:
    24K04095
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
  • 批准号:
    2345097
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Creating an accessible conference to support inclusive research in Mathematical Cognition and Learning
会议:创建一个无障碍会议以支持数学认知和学习的包容性研究
  • 批准号:
    2348499
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403088
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403090
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403089
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
  • 批准号:
    23H01019
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an online learning program to support lifelong learning assistance for nurses who are responsible for community health care in the new normal era
开发在线学习计划,为新常态时代负责社区医疗保健的护士提供终身学习援助
  • 批准号:
    23K09906
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
HCC: Medium: Optimizing Interactive Machine Learning Tools to Support Plant Scientists using Human Centered Design
HCC:中:优化交互式机器学习工具以支持植物科学家使用以人为本的设计
  • 批准号:
    2312643
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Early-career Participant Support for Additive Manufacturing Modeling, Simulation, and Machine Learning Symposium at MS&T 2023; Columbus, Ohio; October 1- 4, 2023
MS 增材制造建模、仿真和机器学习研讨会的早期职业参与者支持
  • 批准号:
    2334074
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了