Event-Clock Hybrid Driven Reconfigurable Perception-Computation Technology

事件时钟混合驱动的可重构感知计算技术

基本信息

  • 批准号:
    22K21280
  • 负责人:
  • 金额:
    $ 1.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-08-31 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

This year, we developed and verified the following technologies for the hybrid-driven reconfigurable perception-computation platform: (1) Spike coding of Electroencephalogram (EEG) signals and its spiking neural network (SNN)-based processing. In several works, we successfully applied spike coding to adaptive, stochastic and frequency coding of EEG signals, respectively, and achieved competitive sleep stage classification accuracy based on SNN; (2) A ternary weight quantization method for deep SNNs and hardware implementation. In this work, we achieved energy-efficient inference hardware by quantizing the weights of SNNs to {-1, 0, 1}. The gradient disappearance problem during model training is avoided by designing cross-layer connections. Simple logical operations can be used in ternary weights SNNs at the inference stage, to reducing hardware overhead; (3) Training and construction mechanism of reconfigurable bisection neural network (BNN) topology. We proposed a general construction method of BNN and its training mechanism. By constructing a mask matrix with a bisection structure, we can automatically train a BNN model with a specific topology.
今年,我们为混合驱动的可重构感知计算平台开发并验证了以下技术:(1)脑电信号的棘波编码及其基于脉冲神经网络(SNN)的处理。在几项工作中,我们成功地将尖峰编码分别应用于脑电信号的自适应编码、随机编码和频率编码,获得了基于SNN的具有竞争力的睡眠阶段分类精度;(2)一种适用于深度SNN的三值加权量化方法及其硬件实现。在这项工作中,我们通过将SNN的权重量化到{-1,0,1}来实现节能的推理硬件。通过设计跨层连接,避免了模型训练过程中的梯度消失问题。在推理阶段,可以在三值权值神经网络中使用简单的逻辑运算,以减少硬件开销;(3)可重构二分神经网络(BNN)拓扑的训练和构造机制。提出了一种神经网络的一般构造方法及其训练机制。通过构造具有二等分结构的掩码矩阵,可以自动训练具有特定拓扑结构的BNN模型。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bisection Neural Network Toward Reconfigurable Hardware Implementation
Adaptive spike-like representation of eeg signals for sleep stages scoring
用于睡眠阶段评分的脑电图信号的自适应尖峰状表示
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingwei Zhu;Ziwei Yang;Koki Odani;Guang Shi;Yirong Kan;Zheng Chen;Renyuan Zhang
  • 通讯作者:
    Renyuan Zhang
MuGRA: A Scalable Multi-Grained Reconfigurable Accelerator Powered by Elastic Neural Network
MuGRA:由弹性神经网络提供支持的可扩展多粒度可重构加速器
Automatic Sleep Staging via Frequency-Wise Spiking Neural Networks
通过频率尖峰神经网络自动睡眠分期
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haohui Jia;Ziwei Yang;Pei Gao;Man Wu;Chen Li;Yirong Kan;Renyuan Zhang
  • 通讯作者:
    Renyuan Zhang
A Stochastic Coding Method of EEG Signals for Sleep Stage Classification
  • DOI:
    10.1109/socc56010.2022.9908121
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guangxian Zhu;Huijian. Wang;Yirong Kan;Zheng Chen;Ming Huang;M. Altaf-Ul-Amin;N. Ono;Shigehiko Kanaya;Renyuan Zhang;Y. Nakashima
  • 通讯作者:
    Guangxian Zhu;Huijian. Wang;Yirong Kan;Zheng Chen;Ming Huang;M. Altaf-Ul-Amin;N. Ono;Shigehiko Kanaya;Renyuan Zhang;Y. Nakashima
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAN YIRONG其他文献

KAN YIRONG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Revolution of Programmability in Non-von Neumann Platforms by Employing Tandem CGRA + Stochastic Computing
通过采用串联 CGRA 随机计算实现非冯·诺依曼平台的可编程性革命
  • 批准号:
    22H00515
  • 财政年份:
    2022
  • 资助金额:
    $ 1.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了