Eigenstate Thermalization in Dual Unitary Quantum Circuits

双酉量子电路中的本征态热化

基本信息

  • 批准号:
    453812159
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    WBP Fellowship
  • 财政年份:
    2021
  • 资助国家:
    德国
  • 起止时间:
    2020-12-31 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The successful description of isolated quantum systems by thermodynamic equilibrium states has triggered the question how those systems thermalize from a typical pure initial state under unitary time evolution. The eigenstate thermalization hypothesis (ETH) conjectures an answer in terms of a mathematical ansatz which describes the structure of matrix elements of macroscopic observables. Although numerical studies provide strong evidence for ETH in generic many-body quantum systems, analytical proofs that a given system indeed fulfills ETH are rare. In this project I propose to study eigenstate thermalization in dual-unitary quantum circuits and to rigorously confirm ETH and its implications. Such quantum circuits provide minimal models for generic many-body quantum systems and allow for an analytical description of their prominent features. In particular dual-unitary circuit models, which exhibit an additional space-time symmetry, are suitable for exact calculations and thus are excellent candidates for an analytic confirmation of ETH. To this end I plan to (i) numerically investigate eigenstate thermalization in dual-unitary quantum circuits, (ii) establish an analytical description of their quantum dynamics, (iii) confirm the ETH ansatz for local observables, (iv) study entanglement properties of eigenstates, and (v) extend the properties of dual-unitary quantum circuits to more generic many-body systems.
热力学平衡态对孤立量子系统的成功描述引发了这样一个问题:在幺正时间演化下,这些系统如何从典型的纯初态热化。本征态热化假设(ETH)用描述宏观观测量矩阵元结构的数学方法给出了答案。尽管数值研究为ETH在一般多体量子系统中的存在提供了强有力的证据,但很少有分析证明给定系统确实满足ETH。在这个项目中,我建议研究双幺正量子电路中的本征态热化,并严格证实ETH及其含义。这样的量子电路为一般的多体量子系统提供了最小模型,并允许对其突出特征进行分析描述。特别是双酉电路模型,表现出额外的时空对称性,适合于精确计算,因此是ETH分析确认的绝佳候选者。为此,我计划(i)数值研究双幺正量子电路中的本征态热化,(ii)建立它们的量子动力学的分析描述,(iii)确认局部可观测量的ETH近似,(iv)研究本征态的纠缠特性,以及(v)将双幺正量子电路的特性扩展到更一般的多体系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Felix Fritzsch其他文献

Dr. Felix Fritzsch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Felix Fritzsch', 18)}}的其他基金

Rückkehrstipendium
返回奖学金
  • 批准号:
    536754087
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    WBP Return Grant

相似海外基金

Elucidation of thermalization as a nonlinear response
解释热化作为非线性响应
  • 批准号:
    23H01094
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of thermalization of evaporating blackholes
蒸发黑洞的热化分析
  • 批准号:
    23KJ1315
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Revealing the fundamental processes of magnetic energy thermalization through the SUNRISE balloon observation
通过SUNRISE气球观测揭示磁能热化的基本过程
  • 批准号:
    23H01220
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ECLIPSE: Ultrafast Ionization, Heating, Thermalization and Constriction of High-Pressure Nanosecond Pulsed Discharge Plasmas
ECLIPSE:高压纳秒脉冲放电等离子体的超快电离、加热、热化和收缩
  • 批准号:
    2308946
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
  • 批准号:
    2226666
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Jet thermalization in quark-gluon plasma
夸克-胶子等离子体中的喷射热化
  • 批准号:
    22K14041
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exotic Quantum Criticalities in Low Dimensions and Systems with Unusual Quantum Many-Body Thermalization
低维中的奇异量子临界点和具有不寻常量子多体热化的系统
  • 批准号:
    2001186
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quantum Field Theory Out-of-Equilibrium: Thermalization and Chaos
量子场论非平衡态:热化和混沌
  • 批准号:
    2013812
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Study of active species before thermalization and relaxation using sub-femtosecond pulse radiolysis
使用亚飞秒脉冲辐射分解研究热化和弛豫前的活性物质
  • 批准号:
    20H00364
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Locality and delocalization of information in thermalization of isolated quantum systems -towards an experimental approach using ultracold atoms-
孤立量子系统热化中信息的局域性和离域性 - 采用超冷原子的实验方法 -
  • 批准号:
    20H01838
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了