Representation theory of infinite-dimensional Lie algebras and superalgebras and its mathematical applications

无限维李代数和超代数表示论及其数学应用

基本信息

  • 批准号:
    10440009
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

Under this Grant-in-Aid, I made joint research with Professor Victor G.Kac, and obtained the following results :1. "Integrable representations" for affine superalgebras are never easy concept, but should be treated carefully. We found that integrable representations consist of two kinds, namely principal-integrable representations and subprincipal-integrable representations, and gave the explicit and complete list of all highest weights for principal and subprincipal integrable modules.2. We gave an explicit construction of fundamental sl(m|n)^- and osp(m|n)^-modules by using free bosons and free fermions. Using this explicit construction, we calculated the characters and obtained three kinds of character formulas --- Weyl-Kac type, theta-function type and quasi-particle type. From these character formulas, we found that the characters of fundamental sl(m|1)^-modules are Appell's elliptic functions which were discovered by Appell in 1880's but have been forgotten over one hundred years … More . These functions are not modular functions, but we succeeded to compute their asymptotics.3. The trivial representation of an affine superalgebra sl(2|2)^ is a representation of critical level, since its dual Coxeter is equal to 0. So there was no known denominator identity for such superalgebras. We obtained explicitly the denominator formula for sl(2|2)^ by using Riemann's theta relations.4. It is known by the theory of Frenkel-Kac-Wakimoto (1994) that the W-algebra of an usual affine Lie algebra and its representations are constructed in terms of the quantized Drinfeld-Sokolov reduction. But, for affine superalgebras, an immediate extension of this method fails to give a right W-algebra, and the construction of the W-algebra associated to affine superalgebras has long been a problem. We succeeded to resolve the difficulty by tensoring the factor, which arises from the algebraic variety, with the usual BRST-complex. The W-algebra of an affine superalgebra sl (2|1)^ obtained by this method is the direct sum of the centerless Virasoro algebra and the N=2 superconformal algebra. This theory enables us to make a detail investigation on representations of the N=2 superconformal algebra by means of admissible representations of sl(2|1)^. Actually we found that, other than the usual minimal series representations, there exist curious series of N=2 representations whose characters are half-modular functions. This research is now in progress very intensively. Less
在此助学金下,我与维克托·G·卡克教授进行了联合研究,取得了以下成果:1.仿射超代数的“可积表示”从来都不是一个容易的概念,但应该谨慎对待。我们发现可积表示由两类组成,即主次可积表示和次主可积表示,并给出了主次主可积模的所有最高权的显式和完备表。我们利用自由玻色子和自由费米子给出了基本sl(m|n)^-模和osp(m|n)^-模的显式构造。利用这种显式结构,我们计算了特征标,得到了三种特征标公式-Weyl-Kac型、theta函数型和准粒子型。从这些特征标公式中我们发现,基本sl(m|1)^-模的特征标是由Appell在1880年的S发现的,但已被…遗忘了一百多年更多。这些函数不是模函数,但我们成功地计算了它们的渐近性。仿射超代数sl(2|2)^的平凡表示是临界值的表示,因为它的对偶Coxeter等于0。因此,这种超代数没有已知的分母恒等式。我们利用Riemann的theta关系,显式地得到了sl(2|2)^的分母公式。根据Frenkel-Kac-Wakimoto(1994)的理论,通常仿射李代数的W-代数及其表示都是根据量子化的Drinfeld-Sokolov约化构造的。但是,对于仿射超代数,这种方法的直接推广并不能给出一个正确的W-代数,而与仿射超代数相关的W-代数的构造长期以来一直是一个问题。我们成功地解决了这一困难,将由代数簇产生的因子与通常的BRST-复形张开。用这种方法得到的仿射超代数sl(2|1)^的W-代数是无心Virasoro代数和N=2超共形代数的直和。这一理论使我们能够通过sl(2|1)^的容许表示来详细研究N=2超共形代数的表示。实际上,我们发现,除了通常的最小级数表示外,还有一系列奇怪的N=2表示,它们的特征是半模函数。这项研究目前正在非常密集地进行中。较少

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shun-Jen Cheng et al.: "Extensions of Neveu-Schwarz conformal modules"Journal of Math.Physics. 41. 2271-2294 (2000)
Shun-Jen Cheng 等人:“Neveu-Schwarz 共形模的扩展”数学物理杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Wakimoto: "Representation theory of affine superalgebras at the critical level"Documenta Mathematica, Proceedings of ICM. Vol.II. 605-614 (1998)
M.Wakimoto:“临界层的仿射超代数的表示论”Documenta Mathematica,ICM 论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Minoru Wakimoto: "Infinite-Dimensional Lire Algebras"American Mathematical Society. 304 (2001)
Minoru Wakimoto:“无限维里拉代数”美国数学会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shun-Jen Cheng et al.: "Extensions of Neveu-Schwarz conformal modules"Journal of Math. physics. 41. 2271-2294 (2000)
Shun-Jen Cheng 等人:“Neveu-Schwarz 共形模的扩展”数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S-J.Cheng, V.G.Kac, M.Wakimoto: "Extensions of conformal modules"in "Topological Field Theory, Primitive Forms and Related Topics" , Birkhauser. 665-682 (1998)
S-J.Cheng、V.G.Kac、M.Wakimoto:“拓扑场论、原初形式和相关主题”中的“共形模的扩展”,Birkhauser。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WAKIMOTO Minoru其他文献

WAKIMOTO Minoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WAKIMOTO Minoru', 18)}}的其他基金

Representation Theory of Infinite-Dimensional Lie Superalgebras and W-algebras and Their Mathematical Applications
无限维李超代数和W-代数的表示论及其数学应用
  • 批准号:
    13440012
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representation of superalgebras and their quantum groups
超代数及其量子群的表示
  • 批准号:
    08454009
  • 财政年份:
    1996
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Study on the dimension formula of automorphic forms associated with an integrable representation
与可积表示相关的自守形式的维数公式研究
  • 批准号:
    14540003
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了