Deciphering the mechanism of the human proteasome by mass photometry
通过质量光度法破译人类蛋白酶体的机制
基本信息
- 批准号:455633413
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:WBP Fellowship
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In every eukaryotic cell, the proteasome is a vital molecular machine responsible for degradation of polypeptides. It recycles proteins into reusable amino acids and prevents accumulation of peptides into toxic aggregates. For this, the proteasome recognizes proteins flagged by a ubiquitin tag and pulls them in its catalytic lumen for degradation. The proteasome is a central part of many regulatory pathways as it facilitates adjusting the relative concentrations of proteins. This renders it an ideal target for drugs addressing cells which suffer from miss-regulated protein degradation, e.g. caused by neurodegenerative diseases or cancer.For targeted drug design, a profound understanding of the interaction between ubiquitin and the proteasomal recognition sites as well as the proteasome’s catalytic action is essential. Although the human 26S proteasome is being studied for several decades, kinetic data is barely available and requires merging results of an immense amount of different techniques. Consequently, a comprehensive understanding of substrate recognition, binding, and targeted degradation remains elusive. This is due to the fact that mainly bulk experiments are available, which do not allow tracking the complex catalytic proceedings of the 26S proteasome.In the described research action, I will make use of a novel technique, which detects light scattered by single molecules without the need for introducing artificial labels: interferometric scattering microscopy (iSCAT). When combined with a suitable calibration, this technique –termed mass photometry (MP)– enables determining the mass of proteins at a precision of up to tens of kDa and within few seconds.Mass photometry will allow me to study the interaction between substrates and the 26S proteasome. I aim to analyze binding of substrates to the proteasome and the downstream processing steps of deubiquitylation as well as proteolysis in a single-molecule-based assay depending on the quality of the ubiquitin tag. First, I will apply MP to determine the average binding affinities and deubiquitylation/proteolysis rates by acquiring equilibrium mass distributions of ubiquitylated substrates and proteasomes. In a second set of experiments, the mass distribution of the protein complexes in solution will be measured as a function of time after rapid mixing. This will yield separate kinetic information for the processes after binding (deubiquitylation and proteolysis). Thirdly, I will immobilize the proteasome on an interface and supply substrates in the solution on top. This will allow following the complete catalytic cycle in real-time on a molecular level within a consistent experimental design.The described experiments will have an immediate impact on our understanding of proteasomal degradation processes: a detailed mechanistic and kinetic description of the whole catalytic cycle. This will stimulate novel concepts for the design of drugs in neurodegenerative and cancer research.
在每一个真核细胞中,蛋白酶体都是负责多肽降解的重要分子机器。它将蛋白质回收为可重复使用的氨基酸,并防止多肽积聚成有毒的聚集体。为此,蛋白酶体识别泛素标签标记的蛋白质,并将它们拉入其催化腔中进行降解。蛋白酶体是许多调控途径的中心部分,因为它有助于调节蛋白质的相对浓度。这使其成为治疗因神经退行性疾病或癌症引起的蛋白质降解缺失调节的细胞的理想靶点。对于靶向药物设计,深入了解泛素与蛋白酶体识别位点之间的相互作用以及蛋白酶体的催化作用是必不可少的。虽然人类26S蛋白酶体已经被研究了几十年,但动力学数据几乎没有,需要大量不同技术的融合结果。因此,对底物识别、结合和靶向降解的全面了解仍然是难以捉摸的。这是因为主要是批量实验,不允许跟踪26S蛋白酶的复杂催化过程。在所描述的研究行动中,我将利用一种新技术,它无需引入人工标记即可检测单个分子的散射光:干涉散射显微镜(ISCAT)。当与适当的校准相结合时,这种称为质量光度法(MP)的技术能够在几秒钟内以高达数十kDa的精度测定蛋白质的质量。质量光度法将使我能够研究底物和26S蛋白酶体之间的相互作用。我的目标是分析底物与蛋白酶体的结合以及脱泛素化和蛋白降解的下游处理步骤,这取决于泛素标签的质量。首先,我将应用MP通过获得泛素化底物和蛋白酶体的平衡质量分布来确定平均结合亲和力和去泛素化/蛋白水解率。在第二组实验中,蛋白质复合体在溶液中的质量分布将在快速混合后作为时间的函数进行测量。这将为结合后的过程(去泛素化和蛋白分解)产生单独的动力学信息。第三,我会将蛋白酶体固定在界面上,并在顶部的溶液中提供底物。这将允许在一致的实验设计内在分子水平上实时跟踪完整的催化循环。所描述的实验将对我们对蛋白酶体降解过程的理解产生直接影响:对整个催化循环的详细机理和动力学描述。这将激发神经退行性疾病和癌症研究中药物设计的新概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Emanuel Pfitzner其他文献
Dr. Emanuel Pfitzner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
- 批准号:82371634
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
- 批准号:82371028
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
慢性炎症诱发骨丢失的机制及外泌体靶向治疗策略研究
- 批准号:82370889
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
- 批准号:82372743
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
- 批准号:82371103
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
- 批准号:82371799
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Deciphering the molecular mechanism of ineffective erythropoiesis in MDS-5q
破译MDS-5q无效红细胞生成的分子机制
- 批准号:
10773217 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deciphering a Novel Mechanism for Iron-sensing at Mitochondria and Its Role in Erythropoiesis
破译线粒体铁感应的新机制及其在红细胞生成中的作用
- 批准号:
10560352 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deciphering the mechanism of non-canonical cell cycle entry
破译非规范细胞周期进入机制
- 批准号:
10587052 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deciphering a novel lipid-based mechanism of innate immune modulation
破译一种新型的基于脂质的先天免疫调节机制
- 批准号:
10726010 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deciphering the mechanism of long-range gene regulation in vivo
破译体内长程基因调控机制
- 批准号:
10473041 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deciphering the Enzymatic Mechanism of Superoxide Dismutase
破译超氧化物歧化酶的酶促机制
- 批准号:
10663311 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deciphering the Enzymatic Mechanism of Superoxide Dismutase
破译超氧化物歧化酶的酶促机制
- 批准号:
10418479 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deciphering the Enzymatic Mechanism of Superoxide Dismutase
破译超氧化物歧化酶的酶促机制
- 批准号:
10797963 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deciphering the mechanism of SHIP1 regulation in human neutrophils
破译 SHIP1 在人类中性粒细胞中的调节机制
- 批准号:
10434928 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Deciphering the role of tumor-macrophage crosstalk during metastatic dissemination to the peritoneum
解读肿瘤-巨噬细胞串扰在腹膜转移扩散过程中的作用
- 批准号:
10623359 - 财政年份:2021
- 资助金额:
-- - 项目类别: