Characterization of Dynamics at the Solid-Liquid Interface via Dynamic Nuclear Polarization

通过动态核极化表征固液界面的动力学

基本信息

项目摘要

Solid/liquid interfaces are usually difficult to investigate spectroscopically at the molecular level under ambient pressure and temperature conditions. Nuclear magnetic resonance (NMR) is a versatile tool for assessing the liquid dynamics but, when dealing with molecules at the interfaces, struggles with low sensitivity and line broadening. Dynamic nuclear polarization (DNP) denotes a class of techniques that are capable of increasing NMR signals of several orders of magnitude. DNP in the solid-state at cryogenic temperatures enabled the characterization of surfaces in catalytic media, porous materials, and metal-organic frameworks that would have been impossible with standard NMR. However, the dynamics of the liquid at the interface remained inaccessible. DNP in the liquid state at room temperature proved to be a valuable tool to both enhance the NMR signal and to investigate liquid dynamics and molecular interactions on the picoseconds timescale. However, this approach is still limited to low magnetic fields (0.34 T) and 1H as a target nucleus. Recent discoveries showed a much wider potential of the technique: high enhancements (~10^2-10^3) at fields up to 9.4 T were measured on 13C and 31P in small molecules doped with organic radicals as polarizing agents (PAs). Mechanistic studies revealed that fast molecular collisions and structural reorientations are driving efficient polarization transfer and could become more prominent once the mobility of the target molecule or the polarizing agent is constrained.With this project, we aim at expanding the capabilities of DNP in the liquid state towards a fast and sensitive characterization of heterogeneous materials and interfaces. We will perform a mechanistic study on the polarization transfer when either the target molecule or the PA is bound to the surface of a nanoparticle. This will give us the necessary understanding of DNP mechanisms in the slow-motion regime. DNP-NMR experiments will be performed up to 9.4 T, where the DNP enhancement can be coupled with chemical shift resolution. Proof-of-concept experiments will be performed on monolayer-coated gold nanoparticles that can selectively bind molecules at the surface. In this way, using the PA as a local probe on the surface, we aim to disentangle the dynamics of the liquid at the surface, revealing the binding mechanisms and the transient interactions. This project will be pivotal for demonstrating the capability of DNP-NMR in the liquid state for studying the solid/liquid interface. The outcome of the project will enable a new class of experiments to address specific problems in material science, catalysis, and sensing.
在常压和常温条件下,固/液界面通常很难在分子水平上进行光谱研究。核磁共振是一种用于评估液体动力学的通用工具,但在处理界面上的分子时,存在灵敏度低和谱线加宽的问题。动态核极化(DNP)是指一种能够将核磁共振信号增加几个数量级的技术。在低温下处于固态状态的DNP能够表征催化介质、多孔材料和金属有机骨架的表面,而这在标准的核磁共振中是不可能的。然而,界面上的液体动力学仍然无法获得。在室温下处于液态的DNP被证明是一种有价值的工具,既可以增强核磁共振信号,也可以在皮秒尺度上研究液体动力学和分子相互作用。然而,这种方法仍然局限于低磁场(0.34T)和1H作为靶核。最近的发现显示了这项技术的更广泛的潜力:在13C和31P上测量了高达9.4T场强下的高增强(~10^2-10^3),这些小分子中掺入了有机自由基作为偏振剂(PA)。机理研究表明,快速的分子碰撞和结构重定向正在驱动有效的极化转移,一旦目标分子或极化剂的迁移率受到限制,这可能会变得更加突出。通过这个项目,我们的目标是扩大DNP在液体状态下的能力,以快速和灵敏地表征非均质材料和界面。我们将对目标分子或PA结合到纳米粒子表面时的极化转移进行机理研究。这将使我们对慢动作制度下的DNP机制有必要的了解。DNP-核磁共振实验将进行到9.4T,其中DNP增强可以与化学位移分辨相结合。概念验证实验将在单层包裹的金纳米颗粒上进行,这种纳米颗粒可以选择性地结合表面的分子。通过这种方式,使用PA作为表面的局部探针,我们的目标是解开表面液体的动力学,揭示结合机制和瞬时相互作用。该项目将对展示液态DNP-核磁共振研究固/液界面的能力起到关键作用。该项目的成果将使一类新的实验能够解决材料科学、催化和传感方面的具体问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Tomas Orlando其他文献

Dr. Tomas Orlando的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Measurements of ion dynamics at the solid-solid interfaces for all-solid-state batteries using electron microscopy
使用电子显微镜测量全固态电池固-固界面的离子动力学
  • 批准号:
    23H00241
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Elucidation of semi-solid dynamics by innovative computational method and challenge to material microstructure refinement
通过创新计算方法阐明半固体动力学以及对材料微观结构细化的挑战
  • 批准号:
    23H00160
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Aggregation States and Dynamics of Polymer Chains at Solid Interfaces
固体界面聚合物链的聚集状态和动力学
  • 批准号:
    23H02014
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode
合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解
  • 批准号:
    2323474
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode
合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解
  • 批准号:
    2323475
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Direct observation of the dynamics of segmental motion for polymer chain isolated on the solid interface
直接观察固体界面上孤立的聚合物链的链段运动动力学
  • 批准号:
    22K20537
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Solid-State NMR Studies of Non-Covalent Interactions. Structure and Dynamics.
非共价相互作用的固态核磁共振研究。
  • 批准号:
    RGPIN-2020-04623
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
RUI:CAS:Reaction Dynamics of Anderson-Type Polyoxometalate Ions in Aqueous Solution: Relating Solid-State Structures with Solution-State Properties
RUI:CAS:安德森型多金属氧酸盐离子在水溶液中的反应动力学:将固态结构与溶液态性质联系起来
  • 批准号:
    2155190
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elucidating Structures and Order-Determined Energy Transport Dynamics of Solid-Supported Molecular Assemblies
阐明固体支撑分子组装体的结构和有序决定的能量传输动力学
  • 批准号:
    2154363
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Functional Structure and Dynamics of Complex Carbohydrates Via Sensitivity-Enhanced Solid-State NMR and Database Development
职业:通过灵敏度增强的固态核磁共振和数据库开发研究复杂碳水化合物的功能结构和动力学
  • 批准号:
    2308660
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了