Nonthermal High Energy Electron Acceleration from Shock Transition Region to Downstream Region

从激波过渡区到下游区的非热高能电子加速

基本信息

  • 批准号:
    14340144
  • 负责人:
  • 金额:
    $ 5.5万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

The role of collisionless shock waves in the Universe is important as the key mechanism of energy conversion from super-sonic plasma bulk flow energy into particle/thermal energy. However, the understanding of the non-thermal particle acceleration mechanism remains poor. By focusing on the shock surfing acceleration, we investigated the acceleration efficiency, energy spectrum, and shock dynamics. During this Grant-in-Aid research period, we obtained the following results :(1)The large amplitude electrostatic waves generated by two-stream instability (Buneman instability) plays an important role on the electron shock surfing acceleration. We found that the electrostatic wave can couple with the ion acoustic waves in the nonlinear stage, and the wave amplitude can be further enhanced. Also we discussed that the emission of the large amplitude waves occurs when the plasma frequency is larger than the electron cyclotron one.(2)In oblique shock waves, due to the competing effect between the Lorentz force and the escape of high energy electrons, the maximum efficiency of the surfing acceleration occurs when the shock angle becomes about 70 degree.(3)The turbulence behind the coherent electrostatic waves generated by two-stream instability also contributes to the enhancement of particle acceleration.(4)In super-high Mach number shock waves, the shock reformation process becomes weak as increasing Mach number.
宇宙中的无碰撞冲击波的作用是重要的,因为它是从超音速等离子体体整体流能量转换为粒子/热能的关键机制。然而,对非热粒子加速机制的理解仍然很差。通过对冲击冲浪加速度的研究,分析了加速效率、能谱和冲击动力学。在本次资助研究期间,我们取得了以下成果:(1)双流不稳定性(布尼曼不稳定性)产生的大振幅静电波对电子冲击冲浪加速起着重要作用。我们发现,在非线性阶段,静电波可以与离子声波耦合,并且可以进一步增强波的振幅。讨论了当等离子体频率大于电子回旋频率时,大振幅波的发射。(2)In对于斜激波,由于洛伦兹力与高能电子逃逸之间的竞争作用,当激波角度为70 °时,冲浪加速效率最高。(3)双流不稳定性产生的相干静电波背后的湍流也有助于粒子加速的增强。(4)In超高马赫数激波,激波重组过程随马赫数增加而减弱。

项目成果

期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Shimada: "Electron-Ion Coupling Dynamics in the Shock Transition Region"Plasma Physics. 10. 1113-1119 (2003)
N.Shimada:“冲击转变区的电子-离子耦合动力学”等离子体物理学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Electron heating and acceleration in the shock transition region: Background plasma parameter dependence
  • DOI:
    10.1063/1.1652060
  • 发表时间:
    2004-04
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    N. Shimada;M. Hoshino
  • 通讯作者:
    N. Shimada;M. Hoshino
N.Shimada: "Electron Heating and Acceleration in the Shock Transition Region : Background Plasma Parameter Dependence"Plasma Physics. (in press). (2004)
N.Shimada:“冲击过渡区域中的电子加热和加速:背景等离子体参数依赖性”等离子体物理学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hoshino, M.: "Nonthermal Electrons at High Mach Number Shocks : Electron Shock Surfing Acceleration"Astrophys.J.. 572. 880-887 (2002)
Hoshino, M.:“高马赫数冲击下的非热电子:电子冲击冲浪加速”Astrophys.J.. 572. 880-887 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Forced magnetic reconnection
  • DOI:
    10.1017/s0022377817000782
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    G. Vekstein
  • 通讯作者:
    G. Vekstein
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HOSHINO Masahiro其他文献

HOSHINO Masahiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HOSHINO Masahiro', 18)}}的其他基金

Magnetic Field Generation under Interaction between Radiation Field and Plasma
辐射场与等离子体相互作用产生磁场
  • 批准号:
    22654068
  • 财政年份:
    2010
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Particle Acceleration and Dynamics of Relativistic Plasma SheetMediated by Radiation Loss
辐射损失介导的相对论性等离子体片的粒子加速和动力学
  • 批准号:
    22340169
  • 财政年份:
    2010
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Wakefield Acceleration in Relativistic Shock Waves
相对论冲击波中的韦克菲尔德加速
  • 批准号:
    19340171
  • 财政年份:
    2007
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A new approach to the tripartite relations among China, South Korea and North Korea.
中韩朝三方关系新思路。
  • 批准号:
    19510256
  • 财政年份:
    2007
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Electron heating and acceleration in high Mach number shocks
高马赫数冲击中的电子加热和加速
  • 批准号:
    12640430
  • 财政年份:
    2000
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Standard Grant
Study of heating and particle acceleration on collisionless shocks with ground experiment, theory, and high energy resolution X-ray observations
利用地面实验、理论和高能量分辨率 X 射线观测研究无碰撞冲击的加热和粒子加速
  • 批准号:
    23H01211
  • 财政年份:
    2023
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on an inverse process of free electron laser for extreme high gradient particle acceleration
自由电子激光极高梯度粒子加速逆过程研究
  • 批准号:
    23H01198
  • 财政年份:
    2023
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Particle Acceleration Region in Solar Flares Revealed by New-Generation Multi-Wavelength Observations
新一代多波长观测揭示太阳耀斑中的粒子加速区域
  • 批准号:
    23K03455
  • 财政年份:
    2023
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Revealing Particle Acceleration Mechanisms by Magnetic Energy Release with Advanced Hard X-ray Solar Imaging Spectroscopy
利用先进的硬 X 射线太阳成像光谱揭示磁能释放的粒子加速机制
  • 批准号:
    22KJ0873
  • 财政年份:
    2023
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High-repetition rate particle acceleration end-station for ultrafast science
用于超快科学的高重复率粒子加速终端站
  • 批准号:
    RTI-2023-00321
  • 财政年份:
    2022
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Research Tools and Instruments
Investigating Galactic Micro-Quasars as Sources for Particle Acceleration to PetaElectronvolt Energies
研究银河微类星体作为粒子加速到千万亿伏能量的来源
  • 批准号:
    570312-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Ab-initio analysis on auroral structure formation, dynamics, and particle acceleration
极光结构形成、动力学和粒子加速的从头算分析
  • 批准号:
    22H00116
  • 财政年份:
    2022
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collisionless shock generation and particle acceleration using power laser
使用功率激光产生无碰撞冲击和粒子加速
  • 批准号:
    22H00119
  • 财政年份:
    2022
  • 资助金额:
    $ 5.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了