Molecular Dynamic simulation on hydrodynamic instability of interface due to convergence shock and vortex dynamics

收敛激波和涡动力学引起的界面流体动力学不稳定性的分子动力学模拟

基本信息

  • 批准号:
    14380211
  • 负责人:
  • 金额:
    $ 9.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

We have investigated nonlinear evolution of hydrodynamic instabilities, such as the Richtmyer-Meshkov instability(RMI) and the Rayleigh-Taylor instability(RTI) induced by converging shock, with the use of Molecular Dynamic(MD) simulations. We have developed a new MD code for macroscopic hydrodynamic simulations and nonlinear theories for a study of vortex dynamics with density jump at an interface. Main results can be summarized as follows.1.Large scale Molecular Dynamic simulation codeWe have developed a new large scale MD simulation code with a suitable potential barrier for converging shock drive. The code was parallelized for many computers connected through a computer network, such as SUPER SINET. A new dynamic domain composition method was developed, in which computational domains are dynamically reconstructed according computational environment. The scalability of the method was proofed with the use of 720 computers and also super-computers connected through the SUPER SINET.2.Nonlinear evolution of the Richtmyer-Meshkov instability.With the use of the MD simulations existence of Mach shock and Mach stem were examined. Nonlinear stability of a rippled shock in converging geometry was also investigated. Nonlinear evolution of RMI was also studied in a cylindrical geometry for the first time, in which unstable interface is strongly deformed due to reflected shocks. A fully nonlinear theory was developed for vortex dynamics of an interface with density difference. We have shown dependence of nonlinear growth of bubble and spike and double spiral structures on density jumps and initial vorticity.3.Nonlinear evolution of the Rayleigh-Taylor instabilityWe have shown that anomalous diffusion occurs due to the vorticity in the spiral in RTI with the use of MD simulations. We have also developed a nonlinear theory in which asymptotic nonlinear growth of a bubble and its curvature were obtained as a function of density difference.
我们已经研究了流体动力不稳定性的非线性演变,例如Richtmyer-Meshkov不稳定性(RMI)和使用分子动力学(MD)模拟引起的电击引起的雷利 - 泰勒不稳定性(RTI)。我们为宏观流体动力模拟和非线性理论开发了新的MD代码,用于研究界面处密度跳跃的涡流动力学。主要结果可以概括如下。1。量表分子动力学模拟Codewe开发了新的大型MD仿真代码,具有合适的潜在障碍,用于收敛冲击驱动。对于通过计算机网络(例如Super Sinet)连接的许多计算机,该代码是并行的。开发了一种新的动态域组成方法,其中计算域是根据计算环境动态重建的。该方法的可伸缩性是通过使用720台计算机以及通过超级Sinet连接的超级计算机来证明的。2。Richtmyer-Meshkov不稳定性的nonlinelear Evolution。使用MD模拟的使用,检查了Mach Shock和Mach STEM的MD模拟存在。还研究了融合几何形状中波纹冲击的非线性稳定性。还首次在圆柱几何形状中研究了RMI的非线性演化,由于反射冲击,不稳定的界面被强烈变形。开发了一个完全非线性理论,用于与密度差的界面的涡流动力学。我们已经显示了气泡和尖峰非线性生长以及双螺旋结构对密度跳跃和初始涡度的依赖性。3.Rayleigh-Taylor不稳定性的nonlinelarear性演变表明,由于使用MD模拟,RTI中螺旋中的螺旋性涡度是由于RTI螺旋中的涡度而发生异常的扩散。我们还开发了一种非线性理论,在该理论中,气泡的渐近非线性生长及其曲率是密度差的函数。

项目成果

期刊论文数量(92)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Destruction of a solid film under the action of ultrashort laser pulse
  • DOI:
    10.1134/1.1600815
  • 发表时间:
    2003-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Anisimov;V. Zhakhovskiĭ;V. Zhakhovskiĭ;N. Inogamov;K. Nishihara;A. Oparin;Y. Petrov
  • 通讯作者:
    S. Anisimov;V. Zhakhovskiĭ;V. Zhakhovskiĭ;N. Inogamov;K. Nishihara;A. Oparin;Y. Petrov
T.Zh.Esirkepov et al.: "Proposed Double-Layer Target For the Generation of High-Quality Laser Accelerated Ion Beams"Physical Review Letters. 89・17. 175003-1-175003-4 (2002)
T.Zh.Esirkepov 等人:“提出的用于生成高质量激光加速离子束的双层靶”物理评论快报 89・17(2002 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Shimizu et al.: "Coulomb explosion of benzene induced by an intense lager field"Journal of Chemical Physics. 117・7. 3180-3189 (2002)
S. Shimizu 等人:“强啤酒场引起的苯的库仑爆炸”《化学物理杂志》117・7 3180-3189(2002 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Zh.Esirkepov et al.: "Three-Dimensional Relativistic Electromagnetic Subcycle Solitons"Physical Review Letters. 89・27. 275002-1-275002-4 (2002)
T.Zh.Esirkepov 等人:“三维相对论电磁子周期孤子”物理评论快报 89・27 275002-1-275002-4 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
X-ray radiograms of complex blast wave/sphere interactions obtained from laser-produced plasmas juxtaposed with visualizations of two-dimensional axisymmetric hydrodynamic simulations
从激光产生的等离子体获得的复杂爆炸波/球体相互作用的 X 射线射线图与二维轴对称流体动力学模拟的可视化并列
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHIHARA Katsunobu其他文献

NISHIHARA Katsunobu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHIHARA Katsunobu', 18)}}的其他基金

Nonlinear evolution of hydrodynamic instability in laser implosion-vortex dynamics with creation and annihilation of vorticity
激光内爆涡流动力学中流体动力学不稳定性的非线性演化以及涡度的产生和湮灭
  • 批准号:
    18560791
  • 财政年份:
    2006
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Evolution of two Gravitational Instabilities and Thermal Conduction Loss at Fractal Interface
分形界面处两种引力不稳定性和热传导损失的非线性演化
  • 批准号:
    11680486
  • 财政年份:
    1999
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

带参数的心电学偏微分方程的模型降阶算法研究及其应用
  • 批准号:
    11801348
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
正电子发射断层扫描动态影像的智能型示踪剂动力学模型构建方法研究
  • 批准号:
    61300150
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A dynamic domain decomposition method for solving coupled multiphysics problems based on a distributed software agent environment
基于分布式软件代理环境求解耦合多物理场问题的动态域分解方法
  • 批准号:
    243604517
  • 财政年份:
    2013
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了